TUFTS UNIVERSITY
FLETCHER SCHOOL OF LAW AND DIPLOMACY

PRACTICAL KNOWLEDGE
EIB B233

Amar Bhidé
Cabot 505
amar@bhide.net (or amar.bhide@tufts.edu), www.bhide.net

Syllabus: Overview, Requirements and Provisional daily Assignments

Classroom: Cabot 102

Fall 2016

Note:

A computer assignment is due at 12:00 p.m. of the day before each class.

THIS IS A BASIC COURSE REQUIREMENT.

Rev. September 4, 2016
OVERVIEW

This seminar examines the development of practical knowledge intended to transform “existing conditions into preferred ones.” Such knowledge is embodied in artifacts that do not exist in nature including physical objects, organizations, practices, and paradigms. Knowledge of what naturally happens or naturally is – of facts (such as of atomic structure), of physical laws (as of planetary motion), and of axiomatic theorems and models (e.g. in geometry or micro-economics) – lies outside our scope, except to the degree that we can harness such knowledge to develop and use artifacts.

By traditional intellectual standards, studying practical knowledge may seem undignified and uninspiring. The ancient Greeks venerated contemplation, music and the other arts, abstract truths, and mathematical reasoning. Merchants and craftsmen (including, presumably, builders of large hollow horses) occupied the bottom rung of Plato’s idealized society; their knowledge and toil was but a means towards the realization of the good life by a small enlightened class. Modern society has raised science into the pantheon of the wisdom we venerate. And, while engineers, physicians, lawyers, entrepreneurs, managers, and accountants can secure higher incomes, many continue to regard the development of that practical knowledge as subordinate – a mere application or translation of more profound scientific ideas. Similarly, although Western universities started by offering practical medical education, some in the upper reaches of the Academy now regard professional schools as verging on the teaching of trades that have no place in institutions of higher learning.

This is unfortunate.

We are human because we create, not just because we think. Beavers build dams, prairie dogs excavate underground towns that shelter thousands, and crows craft toys for their play. But, a preoccupation with the relentless development of new artifacts that stimulate our senses and minds far beyond any natural physiological need sets our species apart. Moreover, the artifacts embody knowledge created through the exercise of faculties that mark us as human: to imagine, to reason, to have faith and to overcome our anxieties, to communicate and collaborate with remote strangers, and to “truck, barter, and exchange” (as Adam Smith put it).

Moreover, practical knowledge cannot simply be derived from scientific knowledge or by the application of scientific methods. As we will see, it is distinctively more multifarious in its content, in the processes of its development, and in the contributions it integrates than scientific knowledge. It must therefore be studied in its own terms.

Goals. Like its subject matter, the seminar has a practical purpose: to improve your capacity to develop and apply practical knowledge rather than to just deconstruct the process of its development. Thus, in contrast to most courses in the natural sciences, math, logic, and economics, we are less interested in “positivist” predictions (what will naturally happen) and more in “normative” prescription (to secure what we want).

There are also subtle differences in the focus and purpose of this seminar and in much of professional education. The latter also seeks to provide instrumentally useful instruction, but typically such instruction is anchored in the application of existing techniques or paradigms with relatively little emphasis on how to develop new techniques. For instance, professional schools do not provide an analogue to the “scientific method” that guides the development of new knowledge in the natural sciences. Nor does professional education provide much training in what we might call the discriminating use of existing knowledge – how to choose between alternative techniques and adapt them to particular circumstances. Yet, this is precisely what most professionals have to do: change the way things are by skillfully applying and extending practical knowledge.
Seminar on Practical Knowledge

We will seek to reduce this gap by examining: 1) General techniques for goal setting, problem solving, testing, and so on that can serve as building blocks for developing practical knowledge; 2) Practices used for specific tasks (such as motivating employees) or in specialized domains (such as medicine); 3) Case histories of the evolution of knowledge embodied in particular products (such shipping containers) and organizations (such as Handelsbanken).

The next two sections of this syllabus advance propositions that underpin the seminar, first about the distinctive features of practical knowledge, and then about its contrasts with the scientific method. (Please bear in mind that these are broad-brush hypotheses – even if they seem stated as firm conclusions). Section 3 offers a simple pragmatic framework for classifying and ordering the choices faced by developers of practical knowledge. Section 4 provides a summary of the three seminar modules (comprising general techniques, practices for specific tasks and domains, and case histories).

1. Distinctive characteristics

Adaptive Persistence

Like the molecules that store and carry genetic information, the knowledge embodied in man-made artifacts has multifarious forms. Even a simple analgesic like ibuprofen for instance incorporates knowledge that serves a variety of functions – technical design (how many milligrams of active ingredient, binding agents, coatings etc.), sourcing of ingredients, manufacturing and quality control, logistics, packaging, and advertising. Multifunctional knowledge then also requires the support of integrative or coordinative know-how that specifies, for instance, the sequence in which different tasks will be performed or how conflicts between functions will be resolved.

As with the genetic information of living beings, the multifaceted knowledge embodied in man-made artifacts evolves through an extended process, in which the accretion of small changes can have transformational consequences. But, although chance matters and artifacts do not spring full-blown from the mind of an omniscient creator, their extended development can require, as we will see next, an adaptive persistence absent in biological evolution.

In nature, mutations occur randomly without any end or purpose. And, as the political scientist and philosopher Jon Elster notes, the subsequent process of selection occurs in a simple deterministic way – the evolutionary ‘machine’ accepts a mutation if it endows the first organism in which it occurs with a superior reproductive capacity. Natural selection thus has an “impatient, myopic, or opportunistic” character. It cannot learn from mistakes because it has “no memory of the past,” and does not forgo favorable mutations now to realize better ones later, as it has “no ability to act in terms of the future.”

Humans, in contrast, can look beyond immediate consequences. We can reject favorable options – or even accept unfavorable options – “in order to gain access to even more favorable ones later on.” And, if unanticipated problems force us to step back, we can examine what went wrong and adjust our course without changing our overall direction. We can thus adapt while persisting.

The development of fixed-wing aircraft provides a striking example of adaptive persistence. Sir George Cayley first enunciated the underlying premise – that propelling a rigid surface through the resistance of air could produce an upward force (“lift”) that would offset the downward pull of gravity – in 1809. All “airplane designers have this concept at the back of their minds” now, writes Walter Vincenti (former chair of Stanford’s aeronautical engineering department), but Cayley’s concept was “revolutionary at the time” because it “freed designers from the previous impractical notion of flapping wings.” Yet, it took nearly a century before the principle produced the first controlled flight of a powered, heavier-than-air aircraft on December 17, 1903, when the Wright Flyer took wing – for all of 200 feet. In the interim, resourceful and courageous inventors had experimented with gliders, steam engines, gasoline engines, propellers, automobile chains, and rudders. One intrepid pioneer, Otto Lilienthal, who had made the first well-documented, repeated, gliding flights, broke his neck and died in 1896 after his glider stalled. Finally, the Wright Brothers built on these prior efforts, improved on wing materials and designs, and pioneered the “three-axis” system to control flight.
But we can’t count on persistence always paying off, however. Like myopic natural selection, forward-looking human choices can also lead to dead ends, as the development of rigid airships, popularly known as “Zeppelins,” (summarized in the box) shows.

The Rise and Fall of Zeppelins

Count Ferdinand von Zeppelin first formulated his idea for rigid airships in 1874. Over the next 20 years he developed the technical details, which he patented in 1895. After several failures and some fatal accidents, airships built by the Count’s eponymous Zeppelin Company were put into commercial service in 1910 by Deutsche Luftschifffahrts-AG (DELAG). DELAG, founded in 1909 by Count Zeppelin, thus became the world’s first revenue-generating airline. And, by the onset of the First World War, DELAG had carried over 10,000 passengers in over 1500 flights.

Following the war, the Treaty of Versailles then prohibited Germany from building large airships. After the restrictions were lifted in 1926, the Zeppelin Company started building the LZ 127 Graf Zeppelin. Work was completed in 1928 and the Graf (again operated by DELAG) began providing regular transatlantic commercial service in 1930. It was joined in 1936 by the larger LZ 129 Hindenburg. Unfortunately, in 1937, the Hindenburg caught fire in New Jersey after a transatlantic flight, killing 35 of the 97 people on board. The Graf Zeppelin was retired a month later. Thus ended the role of airships in providing commercially viable long-haul air transport that they, not fixed-winged airplanes, had pioneered.

Necessary Leaps

Innovators who persevere therefore exercise more than just the human capacity for forethought, reasoning from the evidence, and learning from mistakes. It’s obvious now that Cayley’s principle was sound and that the many failures that preceded the Wright Flyer reflected limitations of wing, airframe, propeller, and control designs. But efforts to develop fixed-wing airplanes, like alchemy, could have been a fantasy. Or, even if technically feasible, fixed-wing aircraft could have lost out to Zeppelins. Similarly, the more than decade-long effort that, after screening more than 600 compounds, culminated in the synthesis of ibuprofen, could, like efforts to cure the common cold, have been futile.

But, just as success isn’t a forgone conclusion, neither is failure. Invariably, protracted development poses, to borrow from economist Frank Knight, unmeasurable and unquantifiable risk. Skeptics who bet against new technologies – producers of buggy whips, oil lamps, and sailing schooners, for instance – can be swept away.

Therefore, those who persist – as well as those who don’t – have to make choices that, to borrow from the 19th century existentialist Søren Kierkegaard, involve a ‘leap of faith.’ Moreover, those who first make the leaps also have to recruit others to join them. Visionaries rarely can undertake the protracted development of artifacts on their own: they need financiers and colleagues to help them and followers to carry on their work. And, to persuade potentially skeptical supporters, pioneers’ own convictions have to be exceptionally strong.

Consumers also cannot escape venturesome leaps. One simple reason is that different individuals have different tastes and preference. A best-selling book may not delight all subsequent readers and patrons drawn to a three-star restaurant may leave disappointed. More subtly, consumers also often have to invest in artifact specific knowledge and infrastructure that unpredictable social or technological developments can render worthless. For instance, the inability of Sony’s pioneering Betamax video format to withstand the challenge of VHS harmed consumers who had accumulated libraries of Betamax videotapes, just as it did Sony. But avoiding new technologies isn’t safe either: buyers who stuck with sailing ships, like the
shipyards who produced them, also lost out. Similarly, while experimental drugs can have dangerous long-term side effects, rejecting new diagnostic techniques for detecting colon cancer can be life-threatening.

Choices about artifacts do not however demand of complete, unconditional faith Abraham showed in obeying God’s command to kill his son that Kierkegaard’s *Fear and Trembling* posits to be the foundation of true religious belief. Rather, developers and users have to make concrete choices to give practical form to their convictions and dreams. And, as we will now see, these judgments have a ‘pragmatic’ character in combining ‘rationalist’ generalization with context-specific ‘empiricism’ and progressivity with conservatism.

Pragmatic Combinations

Pragmatist philosophers such as Charles Sanders Peirce, William James, and John Dewey, argue that the significance of ideas lies in their practical utility – “cash value,” as James puts it. Where Plato privileged truth that “lies in the abstract and exists more clearly in our minds than in the natural world,” the pragmatist credo avers it is more important to ask what works rather than what is true. Developers of practical knowledge are obviously more pragmatic.

Rationalist generalization + Context-specific Empiricism. Pragmatism also conjoins, according to James, the opposing dispositions of rationalists and empiricists. Rationalists, in James’s classification, are “devoted to abstract and eternal principles.” They “start from wholes and universals and make much of the unity of things.” Their truth lies (as in Plato) more clearly in the mind than in the natural world. Empiricists in contrast are “devoted to facts in all the crude variety.” They seek, like the fox in Isaiah Berlin’s later essay, to know many things rather than the hedgehog who knows one big thing. James’ sympathies clearly tilt towards “pluralistic” empiricism (See box).

But crucially, James argues for including the “monistic” abstractions of rationalism when they have practical utility. James’ own pioneering work in the then emerging field of psychology were not light on abstractions. Similarly, developers and users of artifactual knowledge have to pay close attention to both contextual facts in “all their crude variety” without discarding abstractions that can provide a foundation for practical designs. The overhead bins of modern airplanes have to be designed to accommodate roller carry-on bags and ibuprofen containers have to be childproofed. Similarly, organizing the production of these artifacts requires knowledge of the quirks and capacities of specific manufacturing plans and suppliers. At the same time, developers of airplanes and drugs rely heavily on the abstractions of fluid mechanics and biochemistry.

Progressivity + Conservatism. Pragmatism also balances tendencies that favor and limit change. Nineteenth and early 20th century pragmatists implicitly or explicitly embraced efforts to progress:
ultimate truths might never be discovered but advances in knowledge that improved the human condition were always at hand. John Dewey in fact devoted his life to radically reforming education while James suggested unusual measures to increase one’s productive working hours by curtailing sleep. Later 20th century “neo-pragmatist” philosopher Richard Rorty promoted *Social Hope*.

At the same time, according to James, pragmatic considerations require respecting existing ideas: a pragmatist will seek out new ideas only to the degree that old ideas cannot deliver the goods, and, even then, will favor modifying or extending what exists rather than starting from scratch. Similarly, a visceral belief that things can be made better, that human ingenuity and effort can overcome problems, nourishes the faith necessary for the protracted development of artifacts such as airplanes and ibuprofen. Yet, the existing stock of tangible and intangible capital, and social and psychological conservatism, favors retaining what is already known and used to whatever degree is possible.

2. Contrasts with Natural Sciences

Similar, interdependent, but distinct

The development of scientific knowledge (of how things naturally are) has several features in common with the development of knowledge embodied in man-made artifacts. Unlike biological evolution, both kinds are propelled by human striving, and not just by chance. Both seek to build on existing knowledge and learn from mistakes. Both can require dogged perseverance – the discovery of the structure of the DNA and of evidence of the existence of Higgs boson (“God”) particles no less than the development of fixed wing aircraft and ibuprofen. And, unlike the Platonic pursuit of purely abstract truths that transcend experience, both prioritize observable phenomena that reach our minds through our senses.

Scientific knowledge and the knowledge embodied in artifacts also complement each other. Thus, the discovery of nuclear magnetic resonance prompted the development of spectrometers used in the chemical and oil industries. In some instances, scientific advances that came after the development of artifacts have helped improve the artifacts: thermodynamics improved the efficiency of steam engines, for instance. Conversely, new artifacts can stimulate scientific research. Recounting Henderson’s quip that “until 1850, the steam engine did more for science than science did for the steam engine” physicist Malcolm Longair writes that James Watt’s 1765 invention of a condenser, made in the course of repairing a steam engine, “led to the underpinning of the whole of thermodynamics.” Similarly the invention of electron microscopes brought to scientists’ attention naturally occurring phenomena they could not otherwise observe and new instruments such as spectrometers enabled the testing of scientific theories.

Yet, the development of practical knowledge and its nature also deviates significantly from the development and nature of scientific knowledge. Vincenti argues eloquently in *What Engineers Know* that “technology, though it may apply science, is not the same as or entirely applied science.” Rather, it is “an autonomous body of knowledge, identifiably different from the scientific knowledge with which it interacts.”

What Engineers Know

“Modern engineers are seen as taking over their knowledge from scientists and, by some occasionally dramatic but probably intellectually uninteresting process, using this knowledge to fashion material artifacts. From this point of view, studying the epistemology of science should automatically subsume the knowledge content of engineering. Engineers know from experience that this view is untrue… my career as a research engineer and teacher has been spent producing and organizing knowledge that scientists for the most part do not address.”
Similarly, a plausible argument can be made that the medical knowledge used by physicians is not the same as applied biology or biochemistry, organizational design isn’t applied psychology or sociology, and good lending practices require much more that the application of micro-economic models.

Differences in Accountability

Many differences between scientific and artifactual knowledge can be traced to differences in whose wants developers must satisfy. Scientific knowledge is typically produced by and for other scientists; as mentioned, it may also have value in artifacts used by non-scientists, but that is not generally its primary purpose. Even when scientific research is prompted by – or its funding justified by – practical problems, the “worth” of the results can transcend their utility. A scientific discovery that does not solve the practical problem invoked to secure funding may nonetheless be regarded as a valuable advance.

Moreover, the regarding is done by specialized communities that produce – and are the main consumers of – scientific research. The communities specify questions that merit investigation, the range of hypotheses advanced, and the kind of reasoning and evidence they consider legitimate. Similarly, research communities can establish qualifications for membership and distinguish stars from the plodders. When a scientist seeks outside funding, funding agencies turn to the scientist’s peers to evaluate the research proposal. Even when scientific research is prompted by a practical end (such as the research undertake by virologists in the 1980s with the goal of developing a test for AIDS), scientists usually do not consult users of the artifacts.

In contrast, users who developers do not control have an important say in assessing artifacts. Visionaries may develop products far ahead of anyone’s articulated wants, but ultimately their success requires buyers to open their wallets. Ongoing feedback from users can prompt changes, sometimes quite radical, in what was initially developed. Hollywood studios now even test audience reactions to alternative endings to movies. This does not mean that users always know best – patients continued to demand blood-letting from their sometimes reluctant physicians through the mid-18th century. But, for good or for ill, users have an influential voice.

Norms of Modern Science

Hypotheses. Although the specifics vary, many modern scientific communities have exercised their autonomy to favor hypotheses amenable to falsification through replicable experiments (or, as a next best, through statistical tests of historical data). This norm in turn encourages precisely specified hypotheses about the effects of one or a few causal factors, since ambiguous propositions cannot be falsified and limiting the number of independent variables increases the validation the controlled experiments can provide. Conversely, this norm discourages studying phenomena that occur in a particular time and place: such effects are difficult to replicate in experiments and the causes are often overdetermined (in that many plausible but unverifiable ‘just-so stories’ can be told). Rather, propositions are treated as scientific to the extent they are expected to be universally true and even in common usage, the more general a proposition, the more “scientific” it is regarded to be.

Note that not every scientific community always requires parsimonious experimentally falsifiable generalizations to the same degree. The periodic table is considerably less parsimonious than Newton’s laws of motion (as anyone who has had to memorize the table will testify). Cell biologists, ecologists, and zoologists treat nonexperimental observation and unfalsifiable categorization of complex phenomena as
contributions*. These exceptions suggest that most scientific communities have chosen to privilege experimentally verifiable hypotheses even though they didn’t have to.

Stringent enforcement. Scientists face strong incentives to require strict conformance to these norms. Researchers require funds provided by governments, foundations, and philanthropists who, as mentioned, cannot independently assess the quality of the research. Rather, the outside funding agencies rely on certification provided by journals, whose referees and editors enforce rigorous adherence to the research community’s standards for parsimony, precision, falsification, and empirical evidence. Similarly, not tolerating mistakes also helps scientific communities and publications avoid externally damaging perceptions of favoritism. Therefore, if referees raise credible objections, scientific papers aren’t accepted for publication in the expectation that the problems will be addressed in later iterations.

Membership and specialization. As scientific communities have tightened the criteria for hypotheses and evidence, they have also increased qualifications for membership. Bodies such as the Royal Society once included well-born gentleman-scholars – and even the Delft tradesman, Antonie van Leeuwenhoek, now considered the Father of Microbiology. But today, individuals who do not have PhDs and jobs at universities or recognized research institutions have been almost completely marginalized. Concurrently, the number of research communities, and the compartmentalized specialization of its members, has also grown.

Norms for developing artifacts

Limits to parsimony and precise codification. Developers of artifacts that have to satisfy “outside” users cannot rely just on parsimonious, timeless, and experimentally falsifiable generalizations. As mentioned, knowledge embodied in artifacts such as airplanes and analgesics comprises a complex combination of heterogeneous elements. Parsimonious scientific principles, for instance about fluid flow and biochemistry, may represent an important, sometimes even foundational component. But, artifacts also require a wide range of contextual “foxlike” knowledge about the wants of consumers and the capacities of suppliers.

Nor can all the necessary practical knowledge be codified. Some is indeed precisely specified – in equations, algorithms, drawings, circuit diagrams, and project plans for instance. In other cases, however, complete codification is infeasible – as in the knowledge pilots need to fly airplanes. And, even if feasible, complete codification may be dysfunctional. For instance, it may be better to let employees learn by doing, and to leave them the flexibility to adapt to changing circumstances, than to precisely specify (a la Henry Ford) how they should perform assigned tasks.

Contextual and Temporal Dependencies. Generalizability involves similar constraints and trade-offs. All airplanes must be designed to conform to universal laws of nature, but, there is value to adapting designs to intended use (e.g. long-haul versus short-hop, or cargo versus passenger). Yet, customizing individual planes can make them unaffordable. How many models and options to offer is therefore a matter of pragmatic choice. Moreover, developers will often first tune their artifacts to work in specific circumstances for specific users and then look for ways to generalize their designs for broader applications. In other words, the scientific norm for universality is not paramount.

Developers of practical knowledge also cannot realistically aim to produce timeless ideas. The utility of a design or technique depends on its fit with circumstances of time and place – the prevailing zeitgeist. Moreover, the extent of use itself can affect utility. For instance, the capacity of standardized credit scoring to predict loan defaults deteriorated when its increased use by lenders taught borrowers how to game

* Doing so does risk their standing in the eyes of researchers from other scientific communities however. For instance, the molecular biologist and Nobel Laureate James Watson dismissed naturalist colleagues at Harvard who engaged in classification as “stamp collectors.” This preference for the highly parsimonious and abstract is apparently widespread in universities. As a former student at MIT told me, outside the engineering departments, there is a clear pecking order there. The mathematicians are at the top, physicists come next, then chemists, and then biologists.
their scores. Conversely, learning or network effects can increase utility. For instance, the popularity of a surgical technique can accelerate its improvement and wide adoption of a computer language such as Java can make it a valuable standard. In contrast, increased acceptance of a scientific hypothesis does not affect its correspondence to the natural universe: whatever reality is “out there” remains unchanged.

Tolerance for imperfections. Unlike the gatekeepers of scientific research, buyers of new artifacts who consider mainly their own costs and benefits (rather than follow a group norm) are often willing to live with some obvious defects in the expectation that they will be fixed. In some cases, the expectation can even lead to acquisitions that make users at least temporarily worse off.

Experiments and Tests. Knowledge comprising a synthesis of multifarious elements precludes well-controlled experiments that isolate individual causal factors and requires taking the effects of some elements on faith. (See Box, Upping the Dose).

Upping the Dose

As recorded in the documentary _Emperor of All Maladies_, Dr. Stephen Rosenberg began exploring immunotherapy treatments for cancer in the 1970s after observing a miraculous remission in one of his patients. His approach was to extract proteins from immune cells grown in a laboratory culture and then inject these proteins into patients to boost their immune systems. Clinical trials of the extracted proteins (called “interleukin”) began in 1982, but showed no signs of working on the first 66 patients. Dr. Rosenberg then gave, in 1984, a much higher dose of interleukin to the 67th patient, a Navy officer named Linda Taylor who went into complete remission and remained in good health for decades thereafter. High dosage became the norm for all subsequent interleukin treatments.

This story illustrates two common patterns of artifactual development discussed in the main text. First, the trial was a joint test of the general idea of immunotherapy, a specific manifestation, namely interleukin, and the dosage of interleukin. Second, Dr. Rosenberg’s decision to persist after 66 failures reflected his strong convictions and possibly incentives to protect his personal “investment” in immunological therapies.

Put differently, the design of experiments – and their interpretations – tends to reflect the experimenter’s personal beliefs and priors (rather than those of a research community). Developers can make choices based on experiments and results that journal referees would dismiss as flawed or inconclusive (because, for instance, they had “selected on the dependent variable” or “confounded correlation with cause”).

Experiments undertaken to develop practical knowledge also encompass broader and more consequentialist ends. For instance, whereas scientists seek verification of a hypothesis (to the satisfaction of their fellow researchers), developers of artifacts can experiment in order to decide whether to embark on a development project; choose a technological platform; troubleshoot and cure defects in a prototype; modify an artifact that that works under conditions A to work under conditions B or C (where it now fails). The tests and experiments used are correspondingly more diverse. For example, a developer may test an idea through thought experiments, examination of the underlying reasoning through a dialectical dialogue, and exploratory conversations with potential users. If, based on idiosyncratic evidentiary standards, the developer decides to continue, she may the follow up with mathematical simulations, physical prototypes, in vivo and in vitro lab tests, customer surveys, focus group interviews, alpha and beta tests, and unpublicized product launches in test markets.

Utilitarian experiments take more cognizance of the circumstances of place and time than experiments designed to verify universal and timeless scientific propositions. Developers seek to incorporate, to the degree possible, all the important external factors expected to affect the performance of their artifacts.
under conditions in which the artifact will be used, rather than “control” for these factors. Thus, engineers will try to test the shapes of airplane wings or automobiles in wind tunnels designed to replicate actual rather than idealized flying or driving conditions.

Inclusion and specialization. As in scientific research, the division of labor in the development of practical knowledge has increased. Although many revolutionary products were invented between 1850 and 1900, new artifacts were usually developed by a handful of inventors who largely did it all themselves. Alexander Graham Bell invented the telephone with one assistant. Automobile pioneers were one- or two-man shows – Karl Benz and Gottlieb Daimler in Germany, Armand Peugeot in France, and the Duryea brothers of Springfield, Massachusetts. Innovation became a more broad-based, “multi-player” game in the 20th century. The Internet does not have a solitary Alexander Graham Bell. Innumerable entrepreneurs, financiers, executives of large companies, members of standard-setting institutions, researchers at universities and commercial and state-sponsored laboratories, programmers who have written and tested untold millions of lines of code, and even investment bankers and politicians – not just a few visionaries or researchers – have turned the Internet into a revolutionary medium of communication and commerce. Steve Jobs, often portrayed as a brilliant solitary inventor, relied on the contributions of tens of thousands of individuals working at Apple and its network of suppliers. Harnessing the creativity and enterprise of the many rather than a few, has resulted in more, better, and faster innovation. And an increased division of labor has, as in the sciences, raised standards for the qualifications required of many specialists.

However, there are important differences. Artifact development has continued to provide entrepreneurial opportunities for college dropouts like Bill Gates, Steve Jobs, and Mark Zuckerberg (who would now be excluded from scientific communities) and the companies they have founded (Microsoft, Apple, and Facebook) recruit many self-taught hackers. Garages have not lost their place as venues for technological innovation from the times that Hewlett and Packard kludged their first product in one. Additionally, the need to satisfy users forces a more connected and interactive specialization of labor than is necessary for scientific research. Different individuals may work on different kinds of problems, but the value of their overall efforts isn’t just the sum of their individual contributions. Indeed, as mentioned earlier, integrative mechanisms and routines represent an important component of practical knowledge.

Compromising Utility

The differences between scientists and developers of practical knowledge have consequences beyond academic arguments among philosophers and historians of science and technology. As I have written elsewhere, a scientistic regulatory mindset has powerfully influenced the development of modern medical treatments. Regulators have favored double-blind trials and single-molecule drugs that can be easily tested through blinded trials, while discouraging try-it, fix-it experimentation, combination therapies customized for individual patients, off-label uses of drugs, and patients playing a role in shaping their diagnoses and treatments. This inapt replication of scientific norms I argue hinders the development of cost-effective therapies. Similarly, as many scholars have argued, randomized control tests (that play a central role in validating many scientific hypotheses) may do more harm than good when used to evaluate economic development and other public policy initiatives.

3. Pragmatic Framework

“Madness” of Choice

The pragmatic criterion of utility to users (rather than of satisfying the well-defined norms of fellow researchers) raises the question, how do users choose? As mentioned, artifacts evolve constantly. A simple side-by-side comparison of current options – sailing ships and steamboats in the mid-1800s for instance – can lead users astray. Likewise, how do developers anticipate what choices will best satisfy current and future users? Moreover, the immediately apparent options may not be the only ones actually available. How do users and developers choose whether and where to search for less obvious alternatives?
The multidimensional nature of knowledge embodied in artifacts further complicates matters, because each dimension (dosage, packaging, production, marketing, and so on in the ibuprofen example) requires a choice. And choices in one dimension have repercussions for the trade-offs in other dimensions. Yet, ranking all possible combinations of options for all the dimensions is simply impossible.

The overwhelming abundance of possibilities can lead to what some have called the “anxiety” or even “madness” of choice. But, efforts to avoid this anxiety can lead to reactive satisficing: choose only when you must and pick the first option that solves the problem at hand. Up to a point, this kind of satisficing is an unavoidable part of the human condition. As Herbert Simon pointed out, because we are not omniscient – our rationality is “bounded” – we cannot know about all the options that might be available to us and evaluate their consequences. Indeed, if we were omniscient, we would not be making real choices. Like hydrogen combining with oxygen to produce water, we would simply be doing what was foreordained.

At the same time, absolute reliance on reactive satisficing renders nearly useless the equally human capacity for foresight, for making choices before we have to, and for imagining options that do not naturally appear in front of us. And, those who fail to exercise this capacity can face significant disadvantages in developing and using artifacts.

Classifying Choices

Strategists, as they have come to be known, have long grappled with the problem of overly reactive satisficing. Their approach has been to recommend frameworks and heuristics to categorize and prioritize choices (See box, McKinsey’s General Outline for an example from the field of management consulting).

James O. McKinsey’s General Outline

James O. McKinsey, an accounting professor at the University of Chicago and founder of the eponymous James O. McKinsey & Company, developed an "integrated" or "top management" approach to consulting in the 1920s. The professor articulated his approach in his firm’s General Outline, which was, according to Marvin Bower (who went on, in 1939, to found a successor firm, McKinsey & Company), "a checklist for making a strategic general survey of a business and a guide to [the firm’s] thinking and problem-solving approach.”

The Outline forced “a strategic approach in that it call[ed] for considering the industry outlook and the company’s competitive position before considering anything specific to the organization. It also force[d] an orderly approach by requiring examination of the elements of managing in an undeviating sequence: goals, strategy, policies, organization structure, facilities, procedures, and personnel — in that order. To emphasize the sequential approach, [Professor McKinsey] would ask: ‘Would you polish the brass on a sinking ship?’”

Oversimplifying considerably, we can map the strategy frameworks into an ordering of choices based on the following classification. First, choices may be distinguished by the degree of their generality. General (“hedgehog”) choices, which seek to anticipate and influence what will happen many periods into the future, pertain to selecting the overall goal or purpose of developing or using an artifact as well as the foundational strategies chosen to achieve that purpose. For instance, the general choices made by a company in developing a smartphone may include decisions to target price sensitive customers (rather than customers looking for devices with the most advanced features) and to rely on a standard Android platform (instead of developing a proprietary architecture) to minimize costs. Developers and users also have to make more specific (“foxlike”) choices to implement general choices: launching a new phone requires establishing targets for the phone’s cost and performance characteristics, selecting and negotiating with suppliers, and so on. These can be more tactical and reversible.
Choices (whether general or specific) can also be classified as pertaining to means or ends, as the smartphone example also illustrates. Thus, on the general side, aiming for a high share of price sensitive customers represents an “end” of an initiative to launch a smart phone and selecting an Android platform one of the “means.” Similarly, on the specific side, establishing a cost target for the bill of materials to be used in the phone constitutes an “end” choice, while selecting the suppliers for the materials represents a “means” choice.

Malleable Ordering

This taxonomy suggests a natural ordering to simplify and align choices: make general choices before specific choices and choose ends before choosing means. When general choices are made first, they can help make specific choices that are consistent with each other and over time. Similarly, first choosing ends (general or specific) helps create consistency in the subsequent selection of means.

This sequence can also spur decision makers to search for or create new options if, for example, none of the existing choices of means appears likely to satisfy the prior choice of ends. In other words, the ordering can help counter the temptation to choose from the most obvious options. And the sequence is not reactive – while choices of means and specifics come later, they can be made well before decision makers have to do so.

Strict ordering may not always be feasible however. Research on “emergent strategies” (and my own previous work on the evolution of fledgling businesses) suggests that general choices of purpose or strategy are often distilled or abstracted from the results of specific choices. For instance, an entrepreneur may act to seize an opportunity or solve a particular problem and that experience may lead her to make a broader decision about overall ends and means – “what business she is in” and her “business model.” This is not shortsighted – the entrepreneur may simply not know enough at the outset.

Likewise, problems in finding feasible means may spur changes in previously chosen ends. For instance, after researchers failed to quickly find a cure or vaccine for AIDS, they turned their attention to treatments that would prolong and improve the quality of patients’ lives. These feedback possibilities do not, however, undermine the benefit of choosing ends before means or of making general choices before specific ones. Rather, they provide a way out if the normal sequence fails and inject some measure of optimizing into what might otherwise be a purely satisficing process.

Congruence with External Circumstance

Strategists also emphasize making choices congruent with exogenous circumstances (i.e. those beyond the direct control of the decision-maker) and not just consistent with each other and over time. Classifications and techniques proposed to assess this “external” congruence have become rather sophisticated, particularly in the business sphere, but for our purposes it may be sufficient to group the exogenous circumstances into two categories: resources available to the developer or user, including funds, personnel, social networks, reputations, and physical or epistemological tools; and constraints imposed by customers, bosses, financiers, competitors, regulators, lawmakers, and social norms as well as the ‘must have’ wants and preferences of the decision-makers themselves.

Ongoing Assessments

In the very short run, developers and users of artifacts may have to treat their resources and constraints as given that their choices have to adapt to. Longer term however, decision-makers can alter their circumstances by, for instance, altering customers’ preference, deepening relationships with financiers, or lobbying lawmakers and regulators. Indeed, many business strategists address their prescriptions to changing the competitive landscape in order to create durable advantages.

In reality however, artifacts – including competitive advantages and strategies designed to achieve them – cannot be expected to last forever. Innovators develop radically improved technologies, competitors learn how to imitate, customers get bored, and lawmakers change the rules. And, even if circumstances do not
change, success itself can make choices obsolete. For instance, in business as in war, the goal of defeating a formidable rival can fire up the troops. But once the enemy is defeated, a new rallying cry becomes necessary. Therefore, all choices, including the big ones of general means and ends, need to be periodically reassessed for internal consistency and external congruence.

4. Seminar Modules

As mentioned at the outset, propositions about practical knowledge and its contrasts with natural sciences advanced in Sections 1 and 2 are highly provisional hypotheses. Likewise, the framework outlined above provides a simple “walking stick” and a common taxonomy for discussion (See figure 1). The propositions and framework have value only to the degree that they provide a starting point to help you develop, through an inductive process, heuristics and frameworks that best fit their world views, temperaments, and career plans.

For this, we rely mainly on individual reflection, sharpened and clarified by group discussions of a wide range of readings (and some podcasts and videos), organized in the following three modules.

1. Generic tasks and techniques.

The module covers the following tasks that developers of practical knowledge in many domains have to undertake and some general techniques they can apply:

- **Goal and problem specification** (choosing “ends”). We examine approaches for selecting both the general or overall goals – the overarching aims or purpose of an organization – as well the definition of particular problems (such as specifying the desired flying characteristics for an airplane design). As mentioned, wisely chosen “general” ends can provide direction to choosing means that are consistent with each other and across time; they can also help coordinate and motivate “multiplayer” effort. But, there are relatively few techniques available for choosing overall ends. More techniques are available however for choosing more specific ends (e.g. selecting the performance characteristics for a new product).

- **Developing solutions** (creating the “means”). This covers not just making a choice between a given set of options – the domain of classic decision theory – but also deciding whether to look for more options, where and how to look, and how to craft solutions that effectively synthesize multifarious elements. Traditionally, solutions were thought to result from an ineffable process of individual creativity which
could not be systematized (although periodically individuals like John Stuart Mill would try). Advances in science, technology, and the growth of organizations that rely on an extensive division of labor have prompted the development of systematic techniques such as Six Sigma and Human Centered Design to coordinate specialized innovative effort. At the same time some experts and writers have sought to reemphasize the role of “intuitive” (rather than structured) problem solving.

• **Sharing and Pooling.** Frequently solutions already exist but are known to only some members of a community or organization who could benefit. Effective sharing therefore increases the value of the solutions. Or different individuals may use partial or imperfect solutions that can be made more complete and robust by effective pooling.

 To some degree, sharing and pooling within organizations and communities can occur naturally. But geographic dispersion of organizational subgroups and communities and organizational “silos” or boundaries can limit the interactions through which solutions are naturally shared. Therefore, large organizations (such as multinational companies, government agencies and international bodies like the WHO) have developed techniques such as checklists and best practice programs to share and pool information.

• **Codification.** Precisely specified ends and means are less likely to be misunderstood when transmitted across organizational boundaries, cultures, distance, and time. Compliance is easier to monitor. And, codification can contribute to the cohesion and feeling of solidarity in large and far-flung organizations and communities. Nearly all structured techniques to develop or share solutions or specify desired outcomes therefore entail some codification. However, for reasons discussed in the section contrasting science and practical knowledge, excessive codification can be dysfunctional. Decision-makers therefore have to choose how much to codify (the options here can range from a few key items to “everything possible”) and how to do so (with options ranging from with complete precision or through broad principles).

• **Communication.** Knowledge of ends and means, however well codified, may not be well used if it is not persuasively and clearly communicated. Even knowledge that is embedded in physical objects requires effective communication – consumers have to be persuaded to buy the objects and instructed in their use. Effective communication also requires comprehensible and convincing exposition. Techniques to make communication effective are age old, going back to at least the Greek rules of rhetoric. Now we have a profusion of techniques that cover a variety of circumstances and technologies, ranging from person-to-person communications, written reports, presentations, recorded videos and podcasts, and social media.

• **Testing and Evaluation** can have many uses, as mentioned earlier, such as choosing the base technology of an artifact, modifying its features, and troubleshooting. Tests and evaluations may also serve to screen or grade the inputs used and outputs produced in the ongoing production of an artifact. For instance, a bank may want to screen job and loan applicants and control the completeness of loan and collateral documentation. The range of techniques used for these multifarious ends is also correspondingly wide and can include instruments such as balanced scorecards, learning assessments, randomized control trials, A/B testing, credit scoring, reference checks, and structured interviews.

Note that this categorization of tasks and techniques is not collectively exhaustive or mutually exclusive. For instance, goal specification tasks can intersect with testing and evaluation and with codification in several ways. If goals are precisely codified, they can serve as metrics for testing and evaluation. However, amorphous or difficult to measure targets may have to be mapped into “proxy” measures for the purpose of testing or evaluation. Similarly, communication tasks cannot be fully separated from codification tasks. Similarly, techniques often span multiple tasks. For instance, Human Centered design, listed above as a problem solving technique, also encompasses problem framing and solution testing. Therefore, while discussing a particular task (or technique) we will as necessary take into account implications for other tasks.)

These include current and historical practices for:

- *Treating Disease*: This traces the evolution of medical practice from the times of Hippocrates to today.

- *Employee motivation*, including the historical example of “incentive wages,” pioneered by Henry Ford.

- *Formulating strategies*. This will include a review of the evolution of the strategy paradigm from James O. McKinsey’s General Outline in the 1920s to the plethora of techniques in use today.

- *Advancing and suppressing democracy* (“people-power). Here we discuss Gene Sharp’s manual for replacing dictatorship with democracy, Saul Alinsky’s *Rules* for community mobilization and Machiavelli’s advice to *The Prince* on how to secure and consolidate autocratic powers.

As we examine both the generalized techniques (in the first module) and the domain-specific practices we will discuss questions such as: What is the “sweet spot” of the technique or practice and to what degree is it applicable outside that sweet spot? Is a complete formula provided or instead some general pointers? What kind of tacit knowledge is stipulated or assumed? How clearly or completely is the technique or practice laid out? And, how persuasive is the argument for using it?

3. Case histories.

We will examine histories of the development of transformational products and technologies, such as shipping containers, personal computers, and MRIs, and of exemplary organizations such as McKinsey and Handelsbanken. The case histories will illuminate features of the development of practical knowledge (discussed earlier in this document) that may not be fully brought out by studying general and specific techniques. These features include the protracted, evolutionary nature of development and the intertwined roles of perseverance, chance, leaps of faith, inspirational leadership, multiplayer interactions, general principles, specific details, means, and ends.

Appreciating what transformational development requires by studying noteworthy cases could potentially influence both hearts and minds. Some participants in the seminar may be inspired to lead transformational developments, while a heightened appreciation of the risks and challenges may encourage others to seek more supportive roles or pursue opportunities and careers that are less revolutionary.
REQUIREMENTS AND GRADING

FINAL PAPER (Due Noon, December 18 2015):

In lieu of a final exam, seminar participants will write a paper on procedures to perform a specific activity or task or on artifacts that serve a particular need. The paper will: 1) describe and evaluate existing alternatives; 2) To the degree historical data is available, discuss how these alternatives evolved; 3) Describe how the authors of the paper might combine the features of, modify, or extend existing alternatives to better satisfy the needs of a particular user segment or organization.

Seminar participants will be expected to select their paper topics as soon as possible, present their findings to other participants towards the end of the term and incorporate the feedback they receive in their final versions. And, as this a capstone “incubator” course, papers may be turned into capstone projects.

Teams of up to three students may work on a single paper. (Under no circumstances, four or more).* And please limit your paper to 15 single-spaced pages. Attach exhibits or appendices as you see fit, but note that I will not give additional credit for bulking up the paper.

PRE-CLASS SUBMISSIONS

Participants will be required to write up and submit (via an electronic google form) one-paragraph responses to about 4-5 questions about the assigned readings by noon the day (i.e., on Mondays) before each class. I will compile the responses and share them with seminar participants by the end of that day. You are not required to read the compilations, but you may find it helpful to skim them. The assigned questions will typically be broad and open-ended.

If you have a problem logging on to the system (because the server is down, for instance) do not waste too much time trying to submit your response. Just send me an email telling me that you tried to submit your responses but couldn’t; I will take you at your word.

I recognize that the day before class deadline may require you to plan your time with some care. But this deadline was suggested to me by a student who said that it would be of great help to those who mother tongue isn’t English. I found the argument persuasive.

NORMS

No laptops open and of course all mobile devices turned off.

Do not enter the classroom after the scheduled start of the class. Tardiness disrupts discussions and devalues the effort of everyone else who does show up on time. You may not however be able to make it on time because of family emergencies, unexpected transportation breakdowns etc. If this happens, instead of showing up late please send me an email telling me why you couldn’t make it. I won’t count it as a “missed” class.

* I will grade the papers independent of team size: for example, two-person and three-person papers of the same quality will receive identical grades.
I will implement the tardiness policy under an honor system: if tell me that you did not make it to class because you were delayed in a traffic accident or because you had to see a physician, I will take you at your word.

GRADING METRIC

Grading will be based on my assessment of papers and in-term contributions in the following manner: I will divide the papers into two roughly equal buckets – a top half and a lower half. I will also identify papers that I regard as truly exceptional and those that fall well below the standard expected in a top-quality professional school. (I expect the truly exceptional papers will comprise less than half of all papers and hope there will be no papers of unacceptable quality.)

Participants who write a “top half” paper and have been regular and diligent contributors during the term will get an A. Those who write a truly exceptional paper but may not have been regular contributors can also get an A, unless their in-term contributions have been seriously deficient.

Those whose in-term contributions have been seriously deficient (or whose papers are of unacceptable quality) will get a B or possibly a failing grade depending on the extent of their shortfall.

Everyone else will get an A-.
Seminar on Practical Knowledge

SCHEDULE

<table>
<thead>
<tr>
<th>Class #</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Introductory case history</td>
</tr>
<tr>
<td>1</td>
<td>13-Sep</td>
<td>Evolution of Medical Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generic Tasks and Techniques</td>
</tr>
<tr>
<td>2</td>
<td>20-Sep</td>
<td>Goal and problem specification</td>
</tr>
<tr>
<td>3</td>
<td>27-Sep</td>
<td>Problem solving processes</td>
</tr>
<tr>
<td>4</td>
<td>4-Oct</td>
<td>Human Centered Design</td>
</tr>
<tr>
<td>5</td>
<td>11-Oct</td>
<td>Pooling and Sharing</td>
</tr>
<tr>
<td>6</td>
<td>18-Oct</td>
<td>Codification</td>
</tr>
<tr>
<td>7</td>
<td>25-Oct</td>
<td>Communication</td>
</tr>
<tr>
<td>8</td>
<td>1-Nov</td>
<td>Testing and Evaluation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practices for Specialized Tasks and Domains</td>
</tr>
<tr>
<td>9</td>
<td>8-Nov</td>
<td>Advancing and Suppressing People Power</td>
</tr>
<tr>
<td>10</td>
<td>15-Nov</td>
<td>Formulating Competitive Strategies and other management paradigms</td>
</tr>
<tr>
<td>11</td>
<td>22-Nov</td>
<td>Motivating Employees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transformational Products and Exemplary Organizations</td>
</tr>
<tr>
<td>12</td>
<td>29-Nov</td>
<td>Handelsbanken</td>
</tr>
<tr>
<td>13</td>
<td>6-Dec</td>
<td>Containers, Computers and Frozen Foods</td>
</tr>
</tbody>
</table>

An electronic submission is due by noon on Monday before each class
DAILY ASSIGNMENTS

INTRODUCTORY/OVERVIEW CASE HISTORY

Evolution of Medical Knowledge

The history of medicine exemplifies efforts to develop knowledge that will “change the way things would naturally be,” drawing upon – but not merely applying – knowledge of “the way things naturally are”.

Readings:

• The History of Medicine – A Very Short Introduction
• Seminar Overview and Course Requirements (Syllabus)

Questions:

After completing the reading on the history of medicine, please answer the following questions:

1. Think of any three innovators (such as Hippocrates or Sydenham), or groups of innovators (such as the French hospitalists): What were their implicit or explicit goals? What were their key general or overall choices (of platforms, paradigms, etc.)?

2. Basing your response on one chapter of your choice: What was the relationship between the development of knowledge of “the way things naturally are” and the knowledge directly used to treat patients? Who were the leading developers of the former? How long were the lags between learning about the way things naturally are and the knowledge used to treat patients?

3. Again, focusing on any one chapter of your choice: In what ways did the state influence the development of medical knowledge?

4. What differences do you see in how practical knowledge is developed in medicine and in nonmedical artifacts and practices?

Please enter your responses – just one paragraph per question – in the Google form below. (It would be prudent to type out your responses in a Word document and then cut-and-paste into the Google form at https://goo.gl/cNrlbU).
1. GENERIC TASKS AND TECHNIQUES

Goal and problem specification (Choosing Ends)

Choosing ends first – and persevering with that choice – helps make choices of means consistent with each other and across time. But making the choices wisely – including choosing to defer the choice – poses a variety of difficulties that we will examine in this session.

Readings/Podcasts
• Technology of Foolishness (James March)
• Obliquity (John Kay podcast)
• Goals Gone Wild (Bazerman et. al) (SKIM)
• Establishing Design Requirements (SKIM) (Vincenti)
• Indeterminate Goodness of the Economy (Bhidé) (through the section, the Problem of Work)

Questions (to be answered at https://goo.gl/wvrSKW)

1. To what degree is the specification development process outlined in Vincenti’s “Establishing Design Requirements” reading applicable outside airplane design?

2. James March (Technology of Foolishness) raises the issue of choosing ends when you don’t know what you will want in the future. What practical solutions do you see to this problem?

3. What kinds of goals or targets are best pursued obliquely (as John Kay puts it) and which ones directly?

4. The Bazerman and Bhidé readings raise the issue of the level of aggregation (or “subsidiarity”) in choosing ends i.e. which ones should be chosen by individuals, which by employers, and which by societies and governments. What criteria can you think of for choosing this level? And, what procedure would you suggest for making this choice?

5. Other observations from and reactions to the readings.

* In later sessions we will also compare this process with the problem framing steps used in six-sigma, reengineering, human centered design and checklist techniques.
Problem solving processes

Efforts to systematize creative problem solving go back at least to Mill’s Methods of induction. Advances in science technology and the growth of large organizations have accelerated these efforts, as we will see in this and the following session.

Note that in several cases the problem solving methods include issues of problem framing (“choosing ends”) discussed in a previous section. In other instances, however, the readings do not make explicit the kinds of problems to be solved – or they take the choice and specification of problems as a given.

Readings
• Process management and the future of six sigma [SKIM] Hammer
• Six Sigma: what it is and how to use it (Plotkin)
• Six sigma: Summary (Wikipedia)
• Reengineering Work (Hammer)
• How strategists really think (Analogue reasoning) (Gavetti Rivkin)
• Blink Wikipedia summary and Richard Posner review of Blink
• What is your intuition? (Pattern recognition and mental simulations)
• The Use of Knowledge in Society (Hayek) (Focus particularly on Sections I-V)
• Six Secrets to True Originality (SKIM) Grant

Questions (to be answered at https://goo.gl/6j9Opn):

1. Pick any one technique (from Six Sigma, reengineering, analogue reasoning, and pattern recognition (“intuition”) and mental simulations). What kind of problem or problems is this technique best suited to solve?

2. What kind of problem or problems is this technique least suited to solve?

3. What does Hayek’s article suggest about six-sigma and reengineering techniques?

4. Other observations from and reactions to the readings.
Human Centered Design

This is an “integrative” technique or process that includes problem framing and problem solving.

Readings

• Design Thinking and Innovative Problem solving (Datar and Bowler)
• Design Thinking Interview Catherine Courage

Questions (to be answered at https://goo.gl/dEvkvX)

1. What kind of problem or problems are design thinking techniques best suited to solve?
2. What kind of problem or problems are design thinking techniques least suited to solve?
Pooling and Sharing

In many instances, answers or solutions are known to some but not all the members of a community or organization. Or, different individuals know about solutions to part of the problem but not the whole. These situations raise questions about how practical knowledge is to be shared and pooled.

Readings/Podcasts

Best practices/learning from success.
• Xerox creates knowledge sharing culture (Powers)
• Creative Benchmarking (HBR) Iacobucci and Nordhielm
• Building a best practice sharing program (HBR) Johnson
• Beyond Best Practice (SMR) Gratton and Ghoshal
• If only we knew what we know (CMR) O’Dell Grayson
• Positive Deviant (David Dorsey. Fast Company)

Role of prices in sharing across distance
Use of Knowledge in Society (Hayek). (Focus on Sections VI through the end)

NUMMI “case study”:
• Podcast posted at at http://www.thisamericanlife.org/radio-archives/episode/403/nummi?act=1#play
• If you prefer to read a transcript instead of listen – the podcast is long -- it is at: http://www.thisamericanlife.org/radio-archives/episode/403/transcript

Optional Readings

• Positive Deviance Guide (Tufts University)

Questions (to be answered at https://goo.gl/c52rhH)

1. What similarities and differences do you see in the “best practice: and “positive deviance” techniques?

2. What lessons can you infer from NUMMI case for applying or adapting problem solving techniques or templates?

3. To what degree does the price system (per Hayek’s argument) complement or substitute for other mechanisms for knowledge sharing?

4. Any other additional general observations?
Codification

Readings/Podcasts:

Checklists (compiled into single pdf):
• Perspectives in quality: designing the WHO Surgical Safety Checklist
• Atul Gawande’s Checklist for Surgery Success
• Atul Gawande interviewed by HBR’s Katherine Bell
• Justin Fox Blogpost on Gawande book
• Ten Steps to Preventing Infection in Hospitals
• Wall Street Journal Interview with Dr. Peter Pronovost
• Wall Street Journal Review of The Checklist Manifesto

Precision and Completeness of Codification:
• Getting it Right the Second Time Szulanski and Winter HBR
• Organizational Learning (Levitt and March.)
• Judgement Deficit (Bhide) or podcast at https://hbr.org/2010/09/the-big-idea-the-judgment-deficit

Questions: (to be answered at https://goo.gl/dQ4SI2)

1. What do you see as the strengths and limitations of checklists – what kinds of problems and tasks are they best and least suited for? Do you agree with Philip Howard’s critique (in his review of Atul Gawande’s book)?

2. What alternatives can you think of that can replace or reduce the need for checklists and other forms of the codification (covered in the previous readings)?

3. What tradeoffs do you see in precise or unambiguous codification (as in airline and surgical checklists)?

4. What tradeoffs do you see in complete or comprehensive codification (as suggested for instance in the Szulanski and Winter article)?
Seminar on Practical Knowledge

Communication

Practical knowledge is useless unless it is persuasively and clearly communicated. Even knowledge that is embedded in physical objects requires effective communication – people have to be persuaded to buy the objects and instructed in their use. Communication in turn itself involves techniques and thus, following the taxonomy laid out in the syllabus, choices of ends means, general principles and specifics.

Readings, podcasts and videos:

Persuasion and Media Theory:
- Rhetoric Bragg et. al podcast posted at http://www.bbc.co.uk/programmes/p004y263
 Harnessing the Science of Persuasion -- Cialdini’s article based on his book *Influence: The Psychology of Persuasion*
- Guardian podcast interpreting Marshall McLuhan’s “medium is the message” claim (McLuhan’s theories left much room for interpretation, as fans of Woody Allen know).

Visual representation of data and arguments:
- *Gene Zelazny: Make Your Presentations Compelling* -- interview with author of *Say It With Charts* and its sequel *Say It With Presentations* and Zelazny remarks
- *Tufte reader’s guide* – based on of Edward Tufte’s *Visual Display of Quantitative Information*
- PowerPoint Debate -- compilation of observations by Parks, Tufte and Zelazny
- Minto Pyramid Presentation (slideshare download)

Written Communications:
- *How to Structure What You Write* (Bierck, on Minto’s Pyramid Principle) HBR
- How to write a Memo or Report (Williams, also based on Pyramid Principle) HBR
- Vonnegut on Style and Shapes of Stories (Maria Popova based on Vonnegut’s presentation and essay included in *How to Use the Power of the Printed Word* anthology)

Making Presentations and Speeches
- *The Knockout Presentation* – HBR
- *For Presidential Hopefuls, Simple language resonates* (Boston Globe article)
- 20 Simple Steps to the Perfect Persuasive Message (blog post)
- Nancy Duarte’s 5 rules for presentations and a TedX East talk (video)
- Steve Job’s presentations launching the iPod and iPhone (video)

Questions (to be answered at https://goo.gl/1N6XQ1)

1. What were the sharpest or most striking “general” differences (of differences “in principle”) did you find in the assigned readings and videos? When would you follow one or the other principle?

2. What were the most striking “specific” lessons that you are likely to use in the future?

3. Which article or presentations did you find to be most effective in communicating their message? Who were the least effective? (List names; paragraph not necessary)

4. Which side do you support on the PowerPoint debate and why?
5. What lessons did you derive from the Steve Jobs presentations? What general and specific choices (e.g. about content, structure, delivery, visual aids, etc.) did Steve Jobs make? To what degree do his presentations confirm, extend, or challenge the other material you read or saw?
Evaluation and Testing

As mentioned in the Overview the ends and means of testing and evaluation can span a wide range. And choices of means obviously presuppose choices of ends – although, pathologically, evaluations and tests can become an end unto themselves. Conversely choices of ends also have to be adapted to the available means – the high cost of reliable tests can often preclude comprehensive screening and thus the defects that have to be tolerated for instance. And both choices (of ends and means) are typically subject to constraints imposed by bosses, regulators, the law, and societal norms.

Readings

- *The Balanced Scorecard* (Norton Kaplan HBR)
- *Management Half-truth and Nonsense: How to Practice Evidence-Based Management*
- *No-Nonsense Guide to Measuring Productivity* (Chew HBR)
- *The Truth Wears Off* (Jonah Lehrer)
- *FDA and Clinical Drug Trials: A Short History* (FDA-Junod)
- *Assessing the Gold Standard — Lessons from the History of RCTs* (Bothwell et. al)
- *Pros and Cons of Standardized Testing* (Columbia)
- *The Problem with Evidence-Based Policies* (Hausmann)
- *The A/B Test: Inside the Technology That’s Changing the Rules of Business* (Christian)
- *Why I don’t Test Wine Blindly* (Altman)
- *Excessive Ambitions* (Elster) SKIM
- *The Air-Propeller Tests of W. F. Durand and E. P. Lesley* (Vincenti) SKIM
- *Formulac Transparency* (Bhidé) (SKIM sections 2 and 4) SKIM

Optional:

- *Learning and Quality Control* (Miranti)
- *Online Controlled Experiments and A/B tests* (Kohavi and Longbotham)
- *Controlled Experiments on the Web* (Kohavi et al)

Questions: (to be answered at https://goo.gl/UDGplM)

1. What lessons do the examples of propeller testing and the No Nonsense Guide to Productivity measurement suggest that could be useful outside the field of aircraft design and productivity measurement?

2. To what degree could A/B testing address the problems raised by Hausmann of randomized control trials? What are some other alternatives to RCTs?

3. What changes would you suggest to the FDA’s drug testing rules?

4. How persuasive did you find Pfeffer and Sutton’s critique of the “sorry state of the business idea marketplace?” How useful did you find the solutions they offer? How does their approach to evidence-based management complement or conflict with the “balanced scorecard” approach?

5. When is standardized and blind testing most and least useful?
2: PRACTICES FOR SPECIALIZED TASKS AND DOMAINS

Advancing and Suppressing People-Power

Readings:
- *From Dictatorship to Democracy* (Gene Sharp)
- *The Prince* (Machiavelli)
- *Hungary’s U-Turn* (Kornai)
- Wikipedia summary of Alinsky’s *Rules for Radicals*

Optional Reading
- Plato’s *Allegory of the cave*

Questions: (to be answered at https://goo.gl/wSEBhc)

1. In light of the topics covered in the previous module, what are your observations on the *Prince*? (For instance, you could think about: the implicit or explicit “ends” of Machiavelli’s advice; its “sweet spot,” in terms of when and where it is most likely to be applicable; how it is codified; and how the author seeks to make his message clear and persuasive.

2. In light of the topics covered in the previous module, what are your observations on *From Dictatorship to Democracy*?

3. What lessons might Viktor Orban and his opponents draw from the two books and from *Rules for Radicals*?

4. (Optional) How does the Allegory of the Cave challenge or reinforce the message of the *Prince* and from *Dictatorship to Democracy*?

5. Other optional observations.
Formulating Competitive Strategy and other Management Paradigms

Readings:
Competitive Strategy
• Competition and Business Strategy in Historical Perspective (Ghemawat)
• Gaining Advantage over competitors (McKinsey Quarterly compilation)
• What is Disruptive Innovation? (Christenson, Raynor and McDonald)
• Clay Christensen’s theories are great for entrepreneurs, but not executives (Bhidé and Ghemawat)

Optional reading on other paradigms
(BUT READ AT LEAST ONE ON PROGRESS FUNCTIONS OR OPERATIONS RESEARCH):
• Bad Work Practices and Good Management Practices (Williams)
• Scientific Management, Systematic Management. (Nelson)
• The Development of Discounted Cash Flow Techniques in U.S. Industry (Dulman)
• Operations Research vis-à-vis Management (Thomas)
• History of Progress Functions. (Dutton)

Questions: (to be answered at https://goo.gl/xnK5nd)

1. What ideas in the readings did you find to be most in conflict? Most complementary?

2. What similarities and differences did you see in the development and diffusion of the paradigms? (you don’t have to discuss all the paradigms)

3. Why haven’t progress functions (or Operations Research) caught on to the same degree as Porter’s Five Forces, Christenson’s Disruptive Technologies, and Discounted cash flows?

4. What questions do the readings raise in your mind that we should discuss in class?

5. Other optional observations.
Motivating Employees

Readings:
• *Keeping the Best: Essential Retention Strategies* HBR (QUICK SKIM)
• Miscellaneous incentivization readings (QUICK SKIM)
• Daniel Pink videos
• *Did Henry Ford Pay Efficiency Wages* (Raff and Summers)
• *A Theory of Human Motivation* (Maslow)
• *A Historical View of Theory Y* (Carson)
• *Nature of Man* (Jensen and Meckling) FOCUS on Section 7 starting on p. 25

Questions (to be answered at https://goo.gl/Emb5vv):

1. What "new takeaways" from the readings (or videos) on employee retention and motivation could you or an organization you are familiar with have fruitfully applied, and in what specific situations?

 You don’t need to describe the specific situations where the takeaways could have been applied in your write up, but please be prepared to describe them in class.

 Also, the “new takeaways” don’t have to be ideas that you had literally never thought about or which are completely non-obvious; they can be things that that you had not given serious thought to and ideas that are obvious once pointed out. Also, the takeaways need not be explicit in the readings but merely prompted by the readings.

2. The practical utility of which propositions do you have the most doubts about?

3. What relationship do you seen between an “efficiency wage” (Ford), “hierarchy of needs” (Maslow), and Theory Ŷ (McGregor)? How relevant and useful are these ideas today?

4. Other optional observations.
TRANSFORMATIONAL PRODUCTS AND EXEMPLARY ORGANIZATIONS

Handelsbanken

Readings
• Handelsbanken.: 2002 (A), HBS No. 115-018.
• Section on "Longevity and Growth" in Chapter on "Missing Attributes" in Origin and Evolution of New Businesses, Bhidé 1999.

Study Questions (for you to think about)

1. What makes Handelsbanken different from other large banks and what tradeoffs does its distinctiveness entail?
2. To what degree does Handelsbanken face the "generic" spurs and constraints to growth (described in the "Missing Attributes" chapter)? What additional spurs and constraint arise because of banking -- and Handelsbanken's distinctiveness distinctive approach?
3. What risks and opportunities does a bank in general -- and Handelsbanken in particular -- face in entering the Baltic and UK markets? How, if at all, would you change Handelsbanken's model in Sweden to the Baltics?
4. How do you weigh the risks and opportunities in the Baltics and UK vis-à-vis growth in Norway, Denmark and Finland where Handelsbanken already has a presence?

Questions to be answered at https://goo.gl/yN5FkJ

As Par Boman, I would recommend Handelsbanken make a serious commitment to growth in (check all that apply):

[] Norway and/or Denmark and/or Finland
[] The Baltic Countries
[] The UK
[] None of the Above
[] Other ____(please specify)____

Because:
[Enter your top reason]
[Enter reason 2]
[Enter reason 3]

Optional Additional comments []
Containers, Computers and other artifacts

Readings and recordings:

(There is a lot to read. Please focus on the story: the plot, the characters, and organizations rather than the author’s take or analysis and skim as indicated).

- “External Economies and Economic Progress: The Case of the Microcomputer Industry” (Langlois).
- “Not Only Microsoft: The Maturing of the Personal Computer Software Industry, 1982-1995” (Campbell-Kelly) (QUICK SKIM)
- Levinson interview with Dan Wang
- “Container Shipping and the Decline of New York, 1955-1975” (Levinson) 49-80
- “Lighting the Path to Profit: GE's Control of the Electric Lamp Industry, 1892-1941” (Reich. (LIGHT SKIM).
- From Novelty to Utility: George Westinghouse and the Business of Innovation during the Age of Edison (Usselman. (LIGHT SKIM)

Questions (to be answered at https://goo.gl/CGO0JT)

Think about the similarities and contracts between all the cases but for the purposes of the pre-class write up focus on just ONE of the following artifacts: Microprocessors (Personal computers), Shipping Containers, and Frozen food

1. What did you find to be the most notable features in the evolution of the artifact, especially in terms of who did what when and why? And how do these features compare with those of the other artifacts you read about?

2. How does the evolution of the artifact fit – or not fit – the propositions in the “strategy” readings?

3. What questions do the readings raise in your mind?

4. Other optional observations.
NOTES TO OVERVIEW

1 Simon (1996)
3 Elster (1993) p.71
4 Vincenti p 208
5 *Contra* Schumpeter’s “gales of creative destruction” imagery however, the alternative technologies can take decades to gather force.
6 And possibly the existential anxiety that Kierkegaard said attends such leaps.
7 Scientific knowledge can also help control dysfunctional practices – for instance, ignorance that Vitamin C rather than all sour tasting substances prevent scurvy is said to have led to its resurgence when the British Navy substituted lime juice for lemon juice in sailor’s diets (Barron 2009).
8 Longair (2003) p. 223
9 See for instance Hayek's distinction between scientific and specific knowledge.
10 To borrow a term from Roethlisberger (1977)