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EDMUND PHELPS

CENTER ON CAPITALISM AND SOCIETY, COLUMBIA UNIVERSITY

THIS DRAFT: SEPTEMBER 27, 2012

Abstract. In Amarante, Ghossoub, and Phelps (AGP) [2], we proposed a model of innovation and
entrepreneurship where the entrepreneur generates innovation, innovation generates Ambiguity for all
economic agents except the entrepreneur, and the financier deals with this Ambiguity through bilateral
contracts that we called innovation contracts. Under a requirement on the financier’s ambiguous
beliefs, we showed the existence and monotonicity of optimal innovation contracts. Moreover, when
the financier is ambiguity-loving in the sense of Schemeidler [26], we showed that the problem of
contracting for innovation under Ambiguity can be reduced to a situation of non-ambiguous but
heterogeneous Bayesian beliefs. This is important since the latter situations have been examined by
Ghossoub [10, 12], and the solutions can be characterized in that case. In this paper, we consider a
special case of the setting of AGP [2] which will allow us to fully characterize an optimal innovation
contract, all the while maintaining a situation where the financier has ambiguous beliefs.

1. Introduction, Preliminary Definitions, and Setup

In a fixed time horizon, any financial instrument in a financial market can be seen as an asset
whose monetary value at any given point in time is contingent on the realizations of some prevailing
uncertainty. In the Bayesian decision-theoretic tradition, uncertainty is typically represented by a
space of states of the world, also called a state space. Financial instruments can then be seen as
functions from the space into the real line, where a real number represents the monetary value of
this financial instrument in a given state of the world. At any given point in time, the collection of
assets, or financial instruments existing in the economy is observable by all economic agents, at least
in principle. Each asset is a function of a set of contingencies. The union taken over all assets of
these contingencies is what we call the set of publicly observable states.

Hence, a given collection F of observable financial instruments will generate a collection OS of
publicly observable sates of the world that all economic agents will agree upon. All economic agents
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observe the space OS, but in addition, each economic agent might envisage states that are not in
OS. These are subjective sates. Hence, each agent i has a subjective state space SSi of the form

SSi “ OS Y Si,

where Si is a list of sates of the world envisaged by agent i, but are not publicly known (i.e.,
OS X Si “ ∅).

1.1. Entrepreneurs and Innovation. The way in which the idea of innovation is defined in Ama-
rante, Ghossoub, and Phelps (AGP) [2] is general. Innovation is defined roughly as any envisaged
financial instrument that pays contingent on the presently observable states of the world in OS, but
also pays contingent on some presently unobservable states of the world that are envisaged by some
innovator, also called the entrepreneur in AGP [2].

Definition 1.1. An innovation is a set of states of the world which are not publicly observable,
along with an asset which pays contingent on those states and on the observable ones.

Here, the word asset should be interpreted broadly as an economic activity capable of generating
value, and is measured in monetary terms. Hence, an innovation is a pair pS YOS, fq such that
S Y OS is a newly envisaged state space, and f : S Y OS Ñ R is a monetary measurement of
the economic value of some newly conceived asset. The object f can be seen as a new financial
instrument. The process of innovation not only creates new financial instruments, but also foresees
new states of the world.

Definition 1.2. An entrepreneur is any economic agent who generates an innovation.

Consequently, an entrepreneur e can be described by a pair pSSe,Xeq. Entrepreneurs are the
innovators, and their entrepreneurial endeavours enrich the economy through newly conceived assets
and newly envisaged future contingencies. To a large extent, the entrepreneurial activity in an
economy inherently generates the dynamism of that economy.

1.2. Financiers and Ambiguity. Consider an economy with an observable sate space OS con-
structed as discussed above, and let A denote the collection of all economic agents in this economy.
Suppose that an economic agent e P A is an entrepreneur, described by a pair pSSe,Xeq, where
SSe “ OS Y Se, Se is a collection of non-observable states envisaged by e, and Xe : SS

e Ñ R is the
monetary measurement of agent e’s innovation. We may assume that e is Bayesian on the state space
SSE, having a probability measure P e on pSSe,Geq representing his beliefs, where Ge is a σ-algebra
of subsets of SSe, called events. By the very definition of Se, any other economic agent a P Azteu
will have no a priori knowledge of Se, and hence of SSe. We may then assume that the agent a is
non-Bayesian, having ambiguous beliefs over the space pSSe,Geq. In other words, the information
available to agent a is neither accurate enough, nor complete enough for him to be able to formulate
an additive Bayesian prior belief. Therefore, by its nature, any entrepreneurial activity generates
ambiguity in the economy, in the sense just described.

When facing ambiguity generated by the entrepreneurial activity of some entrepreneur e P A, the
rest of the economic agents in the economy can be broadly divided into two groups:

‚ a collection C Ă A of agents that are (strictly) averse to ambiguity. These agents are called
consumers by AGP [2];

‚ a collection F Ă A of agents that are either ambiguity-neutral or ambiguity-seeking. These
agents are called financiers by AGP [2].
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Entrepreneurship in an economy not only generates dynamism by foreseeing new contingencies
and new financial instruments, but also inherently generates ambiguity. This, in turn, classifies the
economic agents into three categories: the entrepreneur himself, the consumers who are ambiguity-
averse, and the financiers who are not ambiguity-averse. Modern decision theory, also called Neo-
Bayesian decision theory, has developed many models of choice under uncertainty to accommodate
for the presence of ambiguity and ambiguity-aversion. We refer to the recent survey of Gilboa and
Marinacci [14, 15] for more on this topic. In this paper, the particular model of decision under
ambiguity that we use is that of the Choquet Expected-Utility (CEU) model of Schmeidler [26]. In
the CEU model, ambiguity is represented by a non-additive probability (also called a capacity) on
the state space (see Appendix A.1).

The information available to the entrepreneur is the information generated by the financial in-
strument Xe : Se Y OS Ñ R. That is, the information available to e is the σ-algebra Σe :“ σtXeu
of subsets of Se Y OS generated by Xe. Without loss of generality, we assume that the random
variable X is nonnegative (see AGP [2]). Let B pΣeq denote the space of all bounded, Σe-measurable
functions from Se YOS into R, and let B` pΣeq denote the cone of nonnegative elements of B pΣeq.
By a classical result [1, Th. 4.41], the elements of B` pΣeq are the functions of the form I ˝Xe, where
I : Xe pSe YOSq Ñ R

` is a bounded, Borel-measurable function. We can then assume that both
the entrepreneur and the financier have preferences over the elements of B` pΣeq, since these are
precisely the “innovation contracts” that both parties wish to examine.

Notation. Henceforth, the measurable space pSe YOS,Σeq will be denoted by pS,Σq, for convenience
of notation, and the subscripts and superscripts “ e” will be dropped all throughout.

2. Ambiguity and Innovation Contracts

As in AGP [2], the interaction between entrepreneurs and financiers is central to our study of
innovation. The role of the financier is as essential to the dynamism of an economy as is the role
of an entrepreneur. If the entrepreneur is the mother of innovation, the financier is the midwife.
Without a financier, an entrepreneur might not be able to give shape to his innovation. It is this
interaction between entrepreneurs and financiers that generates dynamism in the economy. This
interaction boils down to a problem of contracting between an entrepreneur and a financier that
AGP [2] calls a problem of contracting for innovation. In essence, entrepreneurs create innovations,
innovations generate Ambiguity, and financiers deal with this Ambiguity through bilateral contracts
for innovation:

Entrepreneurs create Ambiguity through innovation

Financiers deal with it through innovation contracts

Economy takes a new shape

2.1. Setting. The entrepreneur e seeks financing from a financier ϕ to cover the costs of finalizing
his innovation. The entrepreneur gives a description of his innovation to the financier, including a
description of the envisaged new states of the world and the new financial instrument that will serve
as a monetary measurement of this innovation. Although the entrepreneur is assumed to be Bayesian,
having an additive probabilistic assessment of the unobservable sates of the world, and although these
sates are communicated to the financier, there is no a priori reason why the financier will also behave
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as a Bayesian decision maker on the unobservable sates. The financier will be assumed to behave
according to CEU, having a non-additive probabilistic assessment of the unobservable sates.

The contracting situation that might occur between the entrepreneur and the financier can be
described as follows. For a given initial lump-sum financing H that the financier gives to the en-
trepreneur, the latter promises to transfer the total monetary value X of the innovation to the former,
and to receive a monetary compensation I pXq contingent on the monetary amount of the innovation.
The problem that will ensue is to determine an optimal monetary transfer rule I pXq. This will be
clearer once the formal setting is introduced.

As mentioned above, the entrepreneur will inform the financier about S, X, and hence also Σ.
The entrepreneur will be assumed to be Bayesian on pS,Σq, whereas the financier will be assumed
to have non-additive ambiguous beliefs on pS,Σq. In other words, the entrepreneur’s preferences
ěe over B` pΣq have a Subjective Expected-Utility (SEU) representation, yielding a utility function
ue : R Ñ R for monetary outcomes, and a (unique countably additive1) probability measure P on
pS,Σq. That is, for each Y,Z P B` pΣq,

Y ěe Z ðñ

ż
ue ˝ Y dP ě

ż
ue ˝ Z dP

We will also make the following assumption.

Assumption 2.1. X is a continuous random variable on the probability space pS,Σ, P q. That is,
the probability measure P is such that the image measure P ˝X´1 is nonatomic2.

Moreover, the utility function u is bounded and satisfies Inada’s [17] conditions. Specifically,

(1) u is bounded;

(2) u p0q “ 0;

(3) u is strictly increasing and strictly concave;

(4) u is continuously differentiable; and,

(5) u1 p0q “ `8 and lim
xÑ`8

u1 pxq “ 0.

In particular, the entrepreneur is assumed to be Bayesian and risk-averse3. The financier ϕ P F ,
on the other hand, has an ambiguous assessment of the situation. We will assume that the financier’s
preferences ěϕ over the elements of B` pΣq have a Choquet-Expected Utility (CEU) representation
as in Schmeidler [26], yielding a utility function uϕ : R Ñ R for monetary outcomes, and a capacity υ
on pS,Σq. See Appendix A.1 for a brief description of the ideas of a capacity and a Choquet integral
with respect to a capacity. Therefore, for each Y,Z P B` pΣq,

Y ěϕ Z ðñ

ż
uϕ ˝ Y dυ ě

ż
uϕ ˝ Z dυ

where integration is in the sense of Choquet (Definition A.3). We will also make the following
assumption.

1Countable additivity can be obtained by assuming that preferences satisfy the Arrow-Villegas Monotone Continuity
axiom [5].

2A finite measure η on a measurable space pΩ, Gq is said to be nonatomic if for any A P G with η pAq ą 0, there is
some B P G such that B Ĺ A and 0 ă η pBq ă η pAq.

3In expected-utility theory, risk-aversion is equivalent to the concavity of the utility function. This is not necessarily
true for non-expected-utility preferences.
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Assumption 2.2.

(1) The capacity υ is continuous (Definition A.2)

(2) The utility function uϕ is linear.

If the financier were Bayesian on the state space pS,Σq, with preferences having a SEU represen-
tation, then the assumption of linearity of his utility function is tantamount to an assumption of
risk-neutrality, which is a standard assumption in the literature on contracting and related problems.
We will maintain the linearity assumption here. Note, also, that since a utility function is given up
to positive affine transformations [26, pp. 578-579], we can then assume without loss of generality
that the utility function v is simply the identity function, so that for each Y,Z P B` pΣq,

Y ěϕ Z ðñ

ż
Y dυ ě

ż
Z dυ

2.2. Contracting for Innovation under Ambiguity. Formally, the innovation contract is a pair
pH,Y q P R

` ˆ B` pΣq, where H ě 0 is the initial lump-sum payment that the financier gives to
the entrepreneur in exchange of the transfer of the total monetary value X of the innovation; and
Y “ I ˝ X P B` pΣq is a repayment schedule from the financier to the entrepreneur, which the
financier will promise to commit to. A repayment form the financier to the entrepreneur will always
be a nonnegative amount, and it will never exceed the total monetary value of the innovation itself.
In other words, a proper repayment schedule Y P B` pΣq will satisfy Y ď X.

The entrepreneur has initial wealth W e
0 (which can be zero), and after entering into an innovation

contract with the financier, his wealth in the state of the world s P S is given by

W psq “ W e
0 `H ´X psq ` Y psq

After an initial investment of H, the financier will receive X psq ´ Y psq, in each state s P S, and
the formal problem of contracting for innovation the AGP [2] considers is the following.

sup
Y PBpΣq

ż
ue pW e

0 `H ´X ` Y q dP(2.1)

s.t. 0 ď Y ď X
ż

pX ´ Y q dυ ě p1 ` ρqH

where ρ ě 0 is called a loading factor. Problem (2.1) has been studied by AGP [2], and we refer to
the latter for a discussion of problem (2.1), including a description of the constraints involved. For
the sake of completeness, we will review here some of their results. The first result sates that when
the capacity υ satisfies a property called vigilance – initially introduced by Ghossoub [10] – there
exists an optimal repayment scheme Y ˚ “ I˚ ˝X which is comonotonic with X (Definition A.4), i.e.,
such that the function I˚ is nondecreasing. This is an important result because such contracts imply
a truthful revelation of the realizations of X.

Definition 2.3. The capacity υ is said to be vigilant if for any Y,Z P B` pΣq that satisfy

(1) Y and Z are identically distributed for P (i.e., P ˝ Y ´1 “ P ˝ Z´1), and

(2) Y is comonotonic with X,
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it follows that
ş

pX ´ Y q dυ ě
ş

pX ´ Zq dυ.

Theorem 2.4 (AGP [2]). If the capacity υ is vigilant, then there exists an optimal solution Y ˚ to
problem (2.1), and Y ˚ is comonotonic with X.

The second result of AGP [2] that we will review here states that if the financier’s non-additive
belief υ is submodular (i.e., concave – Definition A.5), then the problem could be reduced to a
problem where no ambiguity exists. Specifically, consider the following family of problems, indexed
by a probability measure µ on pS,Σq.

For a given probability measure µ on pS,Σq ,

sup
Y PBpΣq

ż
ue pW e

0 `H ´X ` Y q dP(2.2)

s.t. 0 ď Y ď X
ż

pX ´ Y q dµ ě p1 ` ρqH

It is well-known that in the CEU model, concavity of the capacity υ indicates an attitude of
ambiguity-seeking. This was initially discussed in Schmeidler [26]. In light of our previous discussion
of consumers and financiers, it seems natural that the financier, who is by definition not ambiguity-
averse, is such that υ is a concave capacity. Moreover, a classical result [26, pp. 583-584] sates
that when υ is concave, there exists a nonempty weak˚-compact and convex collection of probability
measures ACυ (called the anti-core of υ) such that for each Y P B` pΣq,

ż
Y dυ “ max

µPACυ

ż
Y dµ

Corollary 2.5 (AGP [2]). If υ is a concave capacity with anti-core ACυ, and if each µ in ACυ

is vigilant, then there exists a µ˚ P ACυ such that a solution to problem (2.2) with measure µ˚ is
comonotonic with X and is a solution to problem (2.1) as well.

This result is important mainly because it reduces the initial problem form a situation of ambiguity
to a situation of non-ambiguous, but heterogeneous beliefs. The latter class of problems has been
investigated by Ghossoub [10, 12].

3. A Full Characterization of Innovation Contracts in a Special Case

Here we consider a special case of the model of contracting for innovation introduced by AGP [2],
which will allow us to fully characterize the shape of an optimal contract. This full characterization is
helpful in practice since it permits to actually compute the optimal innovation contract as a function
of the underlying innovation. However, this requires some additional assumptions.

Namely, we suppose first that υ “ T ˝ Q, for some probability measure Q on pS,Σq and some
function T : r0, 1s Ñ r0, 1s, increasing, concave and continuous, with T p0q “ 0 and T p1q “ 1. Then
T ˝Q is a continuous submodular capacity on pS,Σq. Then the entrepreneur’s problem becomes the
following.
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sup
Y PBpΣq

ż
ue pW e

0 `H ´X ` Y q dP(3.1)

s.t. 0 ď Y ď X
ż

pX ´ Y q dT ˝ Q ě p1 ` ρqH

Based on the results of Gilboa [13], we may assume that the distortion function T and the prob-
ability measure Q are subjective, i.e., they are determined entirely from the financier’s preferences,
since υ is4. We will also assume that X is a continuous random variable on the probability space
pS,Σ, Qq. Specifically:

Assumption 3.1. We assume that υ “ T ˝Q, where:

(1) Q is a probability measure on pS,Σq such that Q ˝X´1 is nonatomic;

(2) T : r0, 1s Ñ r0, 1s is increasing, concave and continuously differentiable; and,

(3) T p0q “ 0, T p1q “ 1, and T 1 p0q ă `8.

We will also assume that the lump-sum start-up financing H that the entrepreneur receives from
the financier guarantees a nonnegative wealth process for the entrepreneur. Specifically, we shall
assume the following.

Assumption 3.2. X ď W e
0 `H, P -a.s.

For each Z P B` pΣq, let FZ ptq “ Q
`
ts P S : Z psq ď tu

˘
denote the distribution function of Z with

respect to the probability measure Q, and let FX ptq “ Q
`
ts P S : X psq ď tu

˘
denote the distribution

function of X with respect to the probability measure Q. Let F´1
Z ptq be the left-continuous inverse

of the distribution function FZ (that is, the quantile function of Z), defined by

(3.2) F´1
Z ptq “ inf

!
z P R

` : FZ pzq ě t
)
, @t P r0, 1s

Definition 3.3. Denote by AQuant the collection of all quantile functions f of the form F´1, where
F is the distribution function of some Z P B` pΣq such that 0 ď Z ď X.

That is, AQuant is the collection of all quantile functions f that satisfy the following properties:

(1) f pzq ď F´1
X pzq, for each 0 ă z ă 1;

(2) f pzq ě 0, for each 0 ă z ă 1.

Denoting by Quant “
!
f : p0, 1q Ñ R

ˇ̌
ˇ f is nondecreasing and left-continuous

)
the collection of

all quantile functions, we can then write AQuant as follows:

(3.3) AQuant “
!
f P Quant : 0 ď f pzq ď F´1

X pzq , for each 0 ă z ă 1
)

4[13, Th. 3.1] also yields that both T and P are unique.
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By Lebesgue’s Decomposition Theorem [1, Th. 10.61] there exists a unique pair pPac, Psq of (non-
negative) finite measures on pS,Σq such that P “ Pac ` Ps, Pac ăă Q, and Ps K Q. That
is, for all B P Σ with Q pBq “ 0, we have Pac pBq “ 0, and there is some A P Σ such that
Q pSzAq “ Ps pAq “ 0. It then also follows that Pac pSzAq “ 0 and Q pAq “ 1. Note also that for all
Z P B pΣq,

ş
Z dP “

ş
A
Z dPac `

ş
SzAZ dPs. Furthermore, by the Radon-Nikodým Theorem [6, Th.

4.2.2] there exists a Q-a.s. unique Σ-measurable and Q-integrable function h : S Ñ r0,`8q such that
Pac pCq “

ş
C
h dQ, for all C P Σ. Consequently, for all Z P B pΣq,

ş
Z dP “

ş
A
Zh dQ`

ş
SzA Z dPs.

Moreover, since Pac pSzAq “ 0, it follows that
ş
SzAZ dPs “

ş
SzA Z dP . Thus, for all Z P B pΣq,ş

Z dP “
ş
A
Zh dQ`

ş
SzAZ dP .

Moreover, since h : S Ñ r0,`8q is Σ-measurable and Q-integrable, there exists a Borel-measurable
and Q˝X´1-integrable map φ : X pSq Ñ r0,`8q such that h “ dPac{dQ “ φ˝X. We will also make
the following assumption.

Assumption 3.4. The Σ-measurable function h “ φ ˝ X “ dPac{dQ is anti-comonotonic with X,
i.e., φ is nonincreasing.

Since Q˝X´1 is nonatomic (by Assumption 3.1), it follows that FX pXq has a uniform distribution
over p0, 1q [9, Lemma A.21], that is, Q

`
ts P S : FX pXq psq ď tu

˘
“ t for each t P p0, 1q. Letting

U :“ FX pXq, it follows that U is a random variable on the probability space pS,Σ, Qq with a uniform
distribution on p0, 1q. Consider the following quantile problem:

For a given β ě p1 ` ρqH,

sup
f

V pfq “

ż
ue

`
W e

0 `H ´ f pUq
˘
φ

`
F´1
X pUq

˘
dQ(3.4)

s.t. f P AQuant
ż
T 1 p1 ´ Uq f pUq dQ “ β

The following theorem characterizes the solution of problem (3.1) in terms of the solution of the
relatively easier quantile problem given in problem (3.4), provided the previous assumptions hold.
The proof is given in Appendix B.

Theorem 3.5. Under the previous assumptions, there exists a parameter β˚ ě p1 ` ρqH such that
if f˚ is optimal for problem (3.4) with parameter β˚, then the function

Y ˚ “
`
X ´ f˚ pUq

˘
1A `X1SzA

is optimal for problem (3.1).

In particular, Y ˚ “ X ´ f˚ pUq , Q-a.s. That is, the set E of states of the world s such that

Y ˚ psq ‰
´
X ´ f˚ pUq

¯
psq has probability 0 under the probability measure Q (and hence υ pEq “

T ˝Q pEq “ 0). The contract that is optimal for the entrepreneur will be seen by the financier to be
almost surely equal to the function X ´ f˚ pUq.

Another immediate implication of Theorem 3.5 is that the states of the world to which the financier
assigns a zero “probability” are sates where the innovation contract is a full transfer rule. On the
set of all other states of the world, the innovation contract deviates from a full transfer rule by the
function f˚ pUq.
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Under the following two assumptions, it is possible to fully characterize the shape of an optimal
innovation contract. This is done in Corollary 3.8.

Assumption 3.6. The Σ-measurable function h “ φ˝X “ dPac{dQ is such that φ is left-continuous.

Assumption 3.7. the function t ÞÑ T 1p1´tq

φpF´1

X
ptqq

, defined on t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u, is nonde-

creasing.

Conditions similar to Assumption 3.7 have been used in several recent studies dealing with some
problem of demand under Ambiguity, where the latter is introduced into the study via a distortion
of probabilities. For instance,

‚ In studying portfolio choice under prospect theory [20, 27], Jin and Zhou [19] impose a similar
monotonicity assumption [19, Assumption 4.1] to that used in our Assumption 3.7;

‚ To characterize the solution to a portfolio choice problem under Yaari’s [28] dual theory of
choice, He and Zhou [16] impose a monotonicity assumption [16, Assumption 3.5] which is
also similar to our Assumption 3.7;

‚ In studying the ideas of greed and leverage within a portfolio choice problem under prospect
theory, Jin and Zhou [18] use an assumption [18, Assumption 2.3] which is similar to our
Assumption 3.7;

‚ Carlier and Dana [4] study an abstract problem of demand for contingent claims. When the
decision maker’s (DM) preferences admit a Rank-Dependent Expected Utility representation
[23, 24], Carlier and Dana [4] show that a similar monotonicity condition to that used in our
Assumption 3.7 is essential to derive some important properties of solutions to their demand
problem [4, Prop. 4.1, Prop. 4.4]. Also, when the DM’s preferences have a prospect theory
representation, then Carlier and Dana [4] impose a monotonicity assumption [4, eq. (5.8)]
similar to our Assumption 3.7.

When the previous assumptions hold, we can give an explicit characterization of an optimal con-
tract, as follows.

Corollary 3.8. Under the previous assumptions, there exists a parameter β˚ ě p1 ` ρqH such that
an optimal solution Y ˚ for problem (3.1) takes the following form:

Y ˚ “

˜
X ´ max

«
0,min

!
F´1
X pUq , f˚

λ˚ pUq
)ff¸

1A `X1SzA

where for each t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u,

f˚
λ˚ ptq “ W e

0 `H ´
`
u1
e

˘´1

˜
´λ˚T 1 p1 ´ tq

φ
`
F´1
X ptq

˘
¸

and λ˚ is chosen so that
ż 1

0

T 1 p1 ´ tqmax
”
0,min

!
F´1
X ptq , f˚

λ˚ ptq
)ı

dt “ β˚
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The proof of Corollary 3.8 is given in Appendix C. Note that if Assumption 3.4 holds, then
Assumption 3.6 is a weak assumption. Indeed, any monotone function is Borel-measurable, and
hence “almost contiunous”, in view of Lusin’s Theorem [8, Theorem 7.5.2]. Also, any monotone
function is almost surely continuous, for Lebesgue measure.

Appendix A. Background Material

A.1. Capacities and the Choquet Integral. Here, we summarize the basic definitions about
capacities, Choquet integrals and Šipoš integrals. The proofs of the statements listed below can be
found, for instance, in [21] or [22].

Definition A.1. A (normalized) capacity on a measurable space pS,Σq is a set function υ : Σ Ñ r0, 1s
such that

(1) υ p∅q “ 0;

(2) υ pSq “ 1; and

(3) A,B P Σ and A Ă B ùñ υ pAq ď υ pBq.

Definition A.2. A capacity υ on pS,Σq is continuous from above (resp. below) if for any sequence
tAnuně1 Ď Σ such that An`1 Ď An (resp. An`1 Ě An) for each n, it holds that

lim
nÑ`8

υ pAnq “ υ

˜
`8č

n“1

An

¸ ˜
resp. lim

nÑ`8
υ pAnq “ υ

˜
`8ď

n“1

An

¸¸

A capacity that is continuous both from above and below is said to be continuous.

Definition A.3. Given a capacity υ and a function ψ P B pΣq, the Choquet integral of ψ w.r.t. υ is
defined by

ż
φ dυ “

ż `8

0

υ pts P S : φ psq ě tuq dt `

ż 0

´8
rυ pts P S : φ psq ě tuq ´ 1s dt

where the integrals on the RHS are taken in the sense of Riemann.

Unlike the Lebesgue integral, the Choquet integral is not additive. One of its characterizing
properties, however, is that it respects additivity on comonotonic functions.

Definition A.4. Two functions Y1, Y2 P B pΣq are comonotonic if for all s, s1 P S

”
Y1psq ´ Y1ps1q

ı”
Y2psq ´ Y2ps1q

ı
ě 0

As mentioned above, if Y1, Y2 P B pΣq are comonotonic then

ż
pY1 ` Y2q dυ “

ż
Y1dυ `

ż
Y2dυ
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Definition A.5. A capacity υ on pS,Σq is submodular (or concave) if for any A,B P Σ

υ pAYBq ` υ pA XBq ď υ pAq ` υ pBq

It is supermodular (or convex) if the reverse inequality holds for any A,B P Σ.

As a functional on B pΣq, the Choquet integral
ş

¨ dυ is concave (resp. convex) if and only if υ is
submodular (resp. supermodular).

Proposition A.6. Let υ be a capacity on pS,Σq.

(1) If Y P B pΣq and c P R, then
ş

pY ` cq dυ “
ş
Y dυ ` c.

(2) If A P Σ then
ş
1A dυ “ υ pAq.

(3) If Y P B pΣq and a ě 0, then
ş
a Y dυ “ a

ş
Y dυ.

(4) If Y1, Y2 P B pΣq are such that Y1 ď Y2, then
ş
Y1 dυ ď

ş
Y2 dυ.

(5) If υ is submodluar, then for any Y1, Y2 P B pΣq,
ş

pY1 ` Y2q dυ ď
ş
Y1 dυ `

ş
Y2 dυ.

Definition A.7. The Šipoš integral, or the symmetric Choquet integral (see [22]), is a functional
Š : B pΣq Ñ R defined by

Š pY q “

ż
Y `dυ ´

ż
Y ´dυ

where the integrals on the RHS are taken in the sense of Choquet and Y ` (resp. Y ´) denotes the
positive (resp. negative) part of Y P B pΣq. Obviously, the Šipoš integral coincides with the Choquet
integral for positive functions.

A.2. Nondecreasing Rearrangements. All the definitions and results that appear in this Appen-
dix are taken from Ghossoub [10, 11, 12] and the references therein. We refer the interested reader
to Ghossoub [10, 11, 12] for proofs and for additional results.

A.2.1. The Nondecreasing Rearrangement. Let pS,G, P q be a probability space, and let X P B` pGq
be a continuous random variable (i.e., P ˝X´1 is a nonatomic Borel probability measure) with range
X pSq “ r0,M s. Denote by Σ the σ-algebra generated by X, and let

φ pBq :“ P
´

ts P S : X psq P Bu
¯

“ P ˝X´1 pBq ,

for any Borel subset B of R.

For any Borel-measurable map I : r0,M s Ñ R, define the distribution function of I as the map
φI : R Ñ r0, 1s given by φI ptq :“ φ

`
tx P r0,M s : I pxq ď tu

˘
. Then φI is a nondecreasing right-

continuous function.

Definition A.8. Let I : r0,M s Ñ r0,M s be any Borel-measurable map, and define the function
rI : r0,M s Ñ R by

(A.1) rI ptq :“ inf
!
z P R

` : φI pzq ě φ
`

r0, ts
˘)
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Then rI is a nondecreasing and Borel-measurable mapping of r0,M s into r0,M s such that I and rI
are φ-equimeasurable, in the sense that for any α P r0,M s,

φ
´

tt P r0,M s : I ptq ď αu
¯

“ φ
´

tt P r0,M s : rI ptq ď αu
¯

Moreover, if I : r0,M s Ñ R
` is another nondecreasing, Borel-measurable map which is φ-

equimeasurable with I, then I “ rI, φ-a.s. rI is called the nondecreasing φ-rearrangement of I.

Now, define Y :“ I ˝ X and rY :“ rI ˝ X. Since both I and rI are Borel-measurable mappings

of r0,M s into itself, it follows that Y, rY P B` pΣq. Note also that rY is nondecreasing in X, in the

sense that if s1, s2 P S are such that X ps1q ď X ps2q then rY ps1q ď rY ps2q, and that Y and rY are

P -equimeasurable. That is, for any α P r0,M s, P
´

ts P S : Y psq ď αu
¯

“ P
´

ts P S : rY psq ď αu
¯
.

We will call rY a nondecreasing P -rearrangement of Y with respect to X, and we shall

denote it by rYP . Note that rYP is P -a.s. unique. Note also that if Y1 and Y2 are P -equimeasurable
and if Y1 P L1 pS,G, P q, then Y2 P L1 pS,G, P q and

ş
ψ pY1q dP “

ş
ψ pY2q dP , for any measurable

function ψ such that the integrals exist.

A.2.2. Supermodularity and Hardy-Littlewood Inequalities. A partially ordered set (poset) is a pair
pA,Áq, where Á is a reflexive, transitive and antisymmetric binary relation on A. For any x, y P A,
we denote by x _ y (resp. x ^ y) the least upper bound (resp. greatest lower bound) of the set
tx, yu. A poset pA,Áq is a lattice when x _ y, x ^ y P A for every x, y P A. For instance, the
Euclidian space R

n is a lattice for the partial order Á defined as follows: for x “ px1, . . . , xnq P R
n

and y “ py1, . . . , ynq P R
n, we write x Á y when xi ě yi, for each i “ 1, . . . , n.

Definition A.9. Let pA,Áq be a lattice. A function L : A Ñ R is said to be supermodular if for
each x, y P A,

L px _ yq ` L px^ yq ě L pxq ` L pyq

In particular, a function L : R2 Ñ R is supermodular if for any x1, x2, y1, y2 P R with x1 ď x2 and
y1 ď y2, we have

L px2, y2q ` L px1, y1q ě L px1, y2q ` L px2, y1q

It is then easily seen that supermodularity of a function L : R2 Ñ R is is equivalent to the function
η pyq “ L px` h, yq ´ L px, yq being nondecreasing for any x P R and h ě 0.

Example A.10. The following are useful examples of supermodular functions on R
2:

(1) If g : R Ñ R is concave and a P R, then the function L1 : R2 Ñ R defined by L1 px, yq “
g pa´ x` yq is supermodular;

(2) The function L2 : R
2 Ñ R defined by L2 px, yq “ ´ py ´ xq` is supermodular;

(3) If η : R Ñ R
` is a nonincreasing function, h : R Ñ R is concave and nondecreasing, and

a P R, then the function L3 : R
2 Ñ R defined by L3 px, yq “ h pa´ yq η pxq is supermodular.
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Lemma A.11. Let Y P B` pΣq, and denote by rYP the nondecreasing P -rearrangement of Y with
respect to X. Then,

(1) If L is a supermodular and P ˝X´1-integrable function on the range of X then:

ż
L

´
X,Y

¯
dP ď

ż
L

´
X, rYP

¯
dP

(2) If 0 ď Y ď X then 0 ď rYP ď X.

Appendix B. Proof of Theorem 3.5

B.1. “Splitting”. Recall that by Lebesgue’s Decomposition Theorem [1, Th. 10.61] there exists a
unique pair pPac, Psq of (nonnegative) finite measures on pS,Σq such that P “ Pac ` Ps, Pac ăă Q,
and Ps K Q. That is, for all B P Σ with Q pBq “ 0, we have Pac pBq “ 0, and there is some A P Σ
such that Q pSzAq “ Ps pAq “ 0. It then also follows that Pac pSzAq “ 0 and Q pAq “ 1. In the
following, the Σ-measurable set A on which Q is concentrated is assumed to be fixed all throughout.
Consider now the following two problems:

For a given β ě p1 ` ρqH,

sup
Y PBpΣq

ż

A

ue
`
W e

0 `H ´X ` Y
˘
dP(B.1)

s.t. 0 ď Y ď X
ż

pX ´ Y q dT ˝ Q “ β

and

sup
Y PBpΣq

ż

SzA
ue

`
W e

0 `H ´X ` Y
˘
dP(B.2)

s.t. 0 ď Y 1SzA ď X1SzAż

SzA
pX ´ Y q dT ˝Q “ 0

Remark B.1. By the boundedness of ue, the supremum of each of the above two problems is finite
when their feasibility sets are nonempty. Now, the function X is feasible for problem (B.2), and so
problem (B.2) has a nonempty feasibility set.

Definition B.2. For a given β ě p1 ` ρqH, let ΘA,β be the feasibility set of problem (B.1) with
parameter β. That is,

ΘA,β :“

#
Y P B` pΣq : 0 ď Y ď X,

ż
pX ´ Y q dT ˝Q “ β

+



14 MASSIMILIANO AMARANTE, MARIO GHOSSOUB, AND EDMUND PHELPS

Denote by Γ the collection of all β for which the feasibility set ΘA,β is nonempty:

Definition B.3. Let Γ :“
!
β ě p1 ` ρqH : ΘA,β ‰ ∅

)

Lemma B.4. Γ ‰ ∅.

Proof. Choose Y P FSB arbitrarily, where FSB is defined by equation (??). Then Y P B` pΣq is
such that 0 ď Y ď X, and

ş
pX ´ Y q dT ˝ Q ě p1 ` ρqH. Let βY “

ş
pX ´ Y q dT ˝ Q. Then,

by definition of βY , and since 0 ď Y ď X, we have Y P ΘA,βY
, and so ΘA,βY

‰ ∅. Consequently,
βY P Γ, and so Γ ‰ ∅. �

Lemma B.5. X is optimal for problem (B.2).

Proof. The feasibility of X for problem (B.2) is clear. To show optimality, let Y be any feasible
solution for problem (B.2). Then for each s P SzA, Y psq ď X psq. Therefore, since ue is increasing,
we have ue

`
W e

0 `H´X psq`Y psq
˘

ď ue
`
W e

0 `H´X psq`X psq
˘

“ ue
`
W e

0 `H
˘
, for each s P SzA.

Thus,
ż

SzA
ue

`
W e

0 `H ´X ` Y
˘
dP ď

ż

SzA
ue

`
W e

0 `H ´X `X
˘
dP “ u

`
W e

0 `H
˘
P pSzAq

�

Remark B.6. Since Q pSzAq “ 0 and T p0q “ 0, it follows that T ˝Q pSzAq “ 0, and so
ş
1SzA dT ˝

Q “ T ˝ Q pSzAq “ 0, by Proposition A.6. Therefore, for any Z P B` pΣq, it follows form the
monotonicity and positive homogeneity of the Choquet integral (Proposition A.6) that

0 ď

ż

SzA
Z dT ˝ Q “

ż
Z1SzA dT ˝ Q ď

ż
}Z}s1SzA dT ˝Q “ }Z}s

ż
1SzA dT ˝Q “ 0

and so
ş
SzA Z dT ˝ Q “ 0. Consequently, it follows form Proposition A.6 that for any Z P B` pΣq,

ż
Z dT ˝ Q ď

ż
Z1A dT ˝Q “

ż

A

Z dT ˝ Q

Now, consider the following problem:

Problem B.7.

sup
βPΓ

#
F ˚
A pβq : F ˚

A pβq is the supremum of problem (B.1), for a fixed β P Γ

+

Lemma B.8. Under Assumption 3.1, if β˚ is optimal for problem (B.7), and if Y ˚
1 is optimal for

problem (B.1) with parameter β˚, then Y ˚ :“ Y ˚
1 1A `X1SzA is optimal for problem (??).
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Proof. By the feasibility of Y ˚
1 for problem (B.1) with parameter β˚, we have 0 ď Y ˚

1 ď X andş
pX ´ Y ˚

1 q dT ˝ P “ β˚. Therefore, 0 ď Y ˚ ď X, and
ż

pX ´ Y ˚q dT ˝ Q “

ż “
pX ´ Y ˚

1 q1A ` pX ´Xq1SzA

‰
dT ˝ Q

“

ż

A

pX ´ Y ˚
1 q dT ˝Q ě

ż
pX ´ Y ˚

1 q dT ˝Q “ β˚ ě p1 ` ρqH

where the inequality
ş
A

pX ´ Y ˚
1 q dT ˝ Q ě

ş
pX ´ Y ˚

1 q dT ˝ Q follows from the same argument as
in Remark B.6. Hence, Y ˚ is feasible for problem (3.1). To show optimality of Y ˚ for problem (3.1),
let Y be any other feasible function for problem (3.1), and define α by α “

ş `
X ´ Y

˘
dT ˝Q. Then

α ě p1 ` ρqH, and so Y is feasible for problem (B.1) with parameter α, and α is feasible for problem
(B.7). Hence

F ˚
A pαq ě

ż

A

ue
`
W e

0 `H ´X ` Y
˘
dP

Now, since β˚ is optimal for problem (B.7), it follows that F ˚
A pβ˚q ě F ˚

A pαq. Moreover, Y is

feasible for problem (B.2) (since 0 ď Y ď X and so
ş
SzA

`
X ´ Y

˘
dT ˝Q “ 0 by Remark B.6). Thus,

F ˚
A pβ˚q ` ue

`
W e

0 `H
˘
P pSzAq ě F ˚

A pαq ` ue
`
W e

0 `H
˘
P pSzAq

ě

ż

A

ue
`
W e

0 `H ´X ` Y
˘
dP ` ue

`
W e

0 `H
˘
P pSzAq

ě

ż

A

ue
`
W e

0 `H ´X ` Y
˘
dP `

ż

SzA
ue

`
W e

0 `H ´X ` Y
˘
dP

“

ż
ue

`
W e

0 `H ´X ` Y
˘
dP

However, F ˚
A pβ˚q “

ş
A
ue

`
W e

0 `H ´X ` Y ˚
1

˘
dP . Therefore,

ż
ue

`
W e

0 `H ´X ` Y ˚
˘
dP “ F ˚

A pβ˚q ` ue
`
W e

0 `H
˘
P pSzAq ě

ż
ue

`
W e

0 `H ´X ` Y
˘
dP

Hence, Y ˚ is optimal for problem (3.1). �

Remark B.9. By Lemma B.8, we can restrict ourselves to solving problem (B.1) with a parameter
β P Γ.

B.2. Solving Problem (B.1). Recall that for all Z P B pΣq,
ş
Z dP “

ş
A
Zh dQ`

ş
SzA Z dP , where

h “ dPac{dQ is the Radon-Nikodým derivative of Pac with respect to Q. Moreover, by definition of
the set A P Σ, we have Q pSzAq “ Ps pAq “ 0. Therefore,

ş
A
Zh dQ “

ş
Zh dQ, for each Z P B pΣq.

Hence, we can rewrite problem (B.1) (restricting ourselves to parameters β P Γ and recalling that
h “ φ ˝ X) as the following problem:

For a given β P Γ,

sup
Y PBpΣq

ż
ue

`
W e

0 `H ´X ` Y
˘
φ pXq dQ(B.3)

s.t. 0 ď Y ď X
ż

pX ´ Y q dT ˝Q “ β
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Now, consider the following problem:

For a given β P Γ,

sup
Y PBpΣq

ż
ue

`
W e

0 `H ´ Z
˘
φ pXq dQ(B.4)

s.t. 0 ď Z ď X
ż
Z dT ˝ Q “ β “

ż `8

0

T
´
Q

`
ts P S : Z psq ě tu

˘¯
dt

Lemma B.10. If Z˚ is optimal for problem (B.4) with parameter β, then Y ˚ :“ X ´Z˚ is optimal
for problem (B.3) with parameter β.

Proof. Let β P Γ be given, and suppose that Z˚ is optimal for problem (B.4) with parameter β.
Define Y ˚ :“ X ´ Z˚. Then Y ˚ P B pΣq. Moreover, since 0 ď Z˚ ď X, it follows that 0 ď Y ˚ ď X.
Now, ż

pX ´ Y ˚q dT ˝ Q “

ż ´
X ´ pX ´ Z˚q

¯
dT ˝ Q “

ż
Z˚ dT ˝ Q “ β

and so Y ˚ is feasible for problem (B.3) with parameter β. To show optimality of Y ˚ for problem
(B.3) with parameter β, suppose, by way of contradiction, that Y ‰ Y ˚ is feasible for problem (B.3)
with parameter β and

ż
ue

`
W e

0 `H ´X ` Y
˘
h dQ ą

ż
ue

`
W e

0 `H ´X ` Y ˚
˘
h dQ

that is, with Z :“ X ´ Y , we have
ż
ue

`
W e

0 `H ´ Z
˘
h dQ ą

ż
ue

`
W e

0 `H ´ Z˚
˘
h dQ

Now, since 0 ď Y ď X and
ş `
X ´ Y

˘
dT ˝Q “ β, we have that Z is feasible for problem (B.4) with

parameter β, hence contradicting the optimality of Z˚ for problem (B.4) with parameter β. Thus,
Y ˚ :“ X ´ Z˚ is optimal for problem (B.3) with parameter β. �

Definition B.11. If Z1, Z2 P B` pΣq are feasible for problem (B.4) with parameter β, we will say
that Z2 is a Pareto improvement of Z1 (or is Pareto-improving) when the following hold:

(1)
ş
ue

`
W e

0 `H ´ Z2

˘
h dQ ě

ş
ue

`
W e

0 `H ´ Z1

˘
h dQ; and,

(2)
ş
Z2 dT ˝Q ě

ş
Z1 dT ˝Q.

The next result shows that for any feasible claim for problem (B.4), there is a another feasible
claim for problem (B.4), which is comonotonic with X and Pareto-improving.

Lemma B.12. Fix a parameter β P Γ. If Z is feasible for problem (B.4) with parameter β, then rZ
is feasible for probem (B.4) with parameter β, comonotonic with X, and Pareto-improving, where rZ
is the nondecreasing Q-rearrangement of Z with respect to X.
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Proof. Let Z be feasible for problem (B.4) with parameter β, and note that by Assumption 3.4,

the map ξ pX,Zq :“ ue
`
W e

0 ` H ´ Z
˘
φ pXq is supermodular (see Example A.10). Let rZ denote

the nondecreasing Q-rearrangement of Z with respect to X. Then by Lemma A.11 (2) and by

equimeasurability of Z and rZ, the function rZ is feasible for problem (B.4) with parameter β. Also,

by Lemma A.11 (1) and by supermodularity of ξ pX,Zq, it follows that rZ is Pareto-improving. �

B.3. Quantile reformulation. Fix a parameter β P Γ, let Z P B` pΣq be feasible for problem (B.4)
with parameter β, and let FZ ptq “ Q

`
ts P S : Z psq ď tu

˘
denote the distribution function of Z with

respect to the probability measure Q, and let FX ptq “ Q
`
ts P S : X psq ď tu

˘
denote the distribution

function of X with respect to the probability measure Q. Let F´1
Z ptq be the left-continuous inverse

of the distribution function FZ (that is, the quantile function of Z), defined by

F´1
Z ptq “ inf

!
z P R

` : FZ pzq ě t
)
, @t P r0, 1s

Let rZ denote the nondecreasing Q-rearrangement of Z with respect to X. Since Z P B` pΣq, it can
be written as ψ˝X for some nonnegative Borel-measurable and bounded map ψ on X pSq. Moreover,
since 0 ď Z ď X, ψ is a mapping of r0,M s into r0,M s. Let ζ :“ Q ˝X´1 be the image measure of Q

under X. By Assumption 3.1, ζ is nonatomic. We can then define the mapping rψ : r0,M s Ñ r0,M s
as in Appendix A.2 (see equation (A.1) on p. 11) to be the nondecreasing ζ-rearrangement of ψ, that
is,

rψ ptq :“ inf
!
z P R

` : ζ
`
tx P r0,M s : ψ pxq ď zu

˘
ě ζ

`
r0, ts

˘)

Then, as in Appendix A.2, rZ “ rψ ˝ X. Therefore, for each s0 P S,

rZ ps0q “ rψ pX ps0qq “ inf
!
z P R

` : ζ
`
tx P r0,M s : ψ pxq ď zu

˘
ě ζ

`
r0,X ps0qs

˘)

However, for each s0 P S,

ζ
`

r0,X ps0qs
˘

“ Q ˝X´1
`

r0,X ps0qs
˘

“ FX pX ps0qq :“ FX pXq ps0q

Moreover,

ζ
`
tx P r0,M s : ψ pxq ď zu

˘
“ Q ˝X´1

`
tx P r0,M s : ψ pxq ď zu

˘

“ Q
`
ts P S : ψ pX psqq ď zu

˘
“ FZ pzq

Consequently, for each s0 P S,

rZ ps0q “ inf
!
z P R

` : FZ pzq ě FX pXq ps0q
)

“ F´1
Z pFX pX ps0qqq :“ F´1

Z pFX pXqq ps0q

That is,

(B.5) rZ “ F´1
Z pFX pXqq

where F´1
Z is the left-continuous inverse of FZ , as defined in equation (3.2).

Hence, by Lemma B.12 and equation (B.5), we can restrict ourselves to finding a solution to
problem (B.4) of the form F´1 pFX pXqq, where F is the distribution function of a function Z P
B` pΣq such that 0 ď Z ď X and

ş
Z dT ˝ Q “ β. Moreover, since X is a nondecreasing function

of X and Q-equimeasurable with X, it follows from the Q-a.s. uniqueness of the equimeasurable
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nondecreasing Q-rearrangement (see Appendix A.2) that X “ F´1
X pFX pXqq, Q-a.s. (see also [9,

Lemma A.21]). Thus, for any Z P B` pΣq,
ż
ue

`
W e

0 `H ´ F´1
Z pFX pXqq

˘
φ

`
F´1
X pFX pXqq

˘
dQ “

ż
ue

`
W e

0 `H ´ rZ
˘
φ pXq dQ

ě

ż
ue

`
W e

0 `H ´ Z
˘
φ pXq dQ

where the inequality follows from the proof of Lemma B.12. Moreover, since ζ “ Q˝X´1 is nonatomic
(by Assumption 3.1), it follows that FX pXq has a uniform distribution over p0, 1q [9, Lemma A.21],
that is, Q

`
ts P S : FX pXq psq ď tu

˘
“ t for each t P p0, 1q. Finally, letting U :“ FX pXq,

ż
F´1 pUq dT ˝Q “

ż `8

0

T
”
Q

`
ts P S : F´1 pUq psq ě tu

˘ı
dt

“

ż `8

0

T
”
Q

`
ts P S : F´1 pUq psq ą tu

˘ı
dt

“

ż `8

0

T
”
1 ´ F ptq

ı
dt

“

ż 1

0

T 1 p1 ´ tqF´1 ptq dt “

ż
T 1 p1 ´ UqF´1 pUq dQ

where the third and last equalities above follow from the fact that U has a uniform distribution over
p0, 1q, and where the second-to-last equality follows from a standard argument5.

Now, recall from Definition 3.3 that AQuant given in equation (3.3) is the collection of all ad-
missible quantile functions, that is the collection of all functions f of the form F´1, where F is the
distribution function of a function Z P B` pΣq such that 0 ď Z ď X, and consider the following
problem:

For a given β P Γ

sup
f

V pfq “

ż
ue

`
W e

0 `H ´ f pUq
˘
φ

`
F´1
X pUq

˘
dQ(B.6)

s.t. f P AQuant
ż
T 1 p1 ´ Uq f pUq dQ “ β

Lemma B.13. If f˚ is optimal for problem (B.6) with parameter β P Γ, then the function f˚ pUq is
optimal for problem (B.4) with parameter β, where U :“ FX pXq. Moreover, X ´ f˚ pUq is optimal
for problem (B.3) with parameter β.

Proof. Fix β P Γ, suppose that f˚ P AQuant is optimal for problem (B.6) with parameter β, and
let Z˚ P B` pΣq be the corresponding function. That is, f˚ is the quantile function of Z˚ and

0 ď Z˚ ď X. Let rZ˚ :“ f˚ pUq. Then rZ˚ is the equimeasurable nondecreasing Q-rearrangement of

5See, e.g. Denneberg [7], Proposition 1.4 on p. 8 and the discussion on pp. 61-62. See also [19, p. 418], [16, p. 210,
p. 213], or [3, p. 207].
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Z˚ with respect to X, and so 0 ď rZ˚ ď X by Lemma A.11 (2). Moreover,

β “

ż
T 1 p1 ´ Uq f˚ pUq dQ “

ż
f˚ pUq dT ˝ Q

“

ż
rZ˚ dT ˝ Q “

ż `8

0

T
”
Q

`
ts P S : rZ˚ psq ě tu

˘ı
dt

“

ż `8

0

T
”
Q

`
ts P S : Z˚ psq ě tu

˘ı
dt “

ż
rZ˚ dT ˝Q

where the second-to-last equality follows from the Q-equimeasurability of Z˚ and rZ˚. Therefore,
rZ˚ “ f˚ pUq is feasible for problem (B.4) with parameter β. To show optimality, let Z be any
feasible solution for problem (B.4) with parameter β, and let F be the distribution function for Z.

Then, by Lemma B.12, the function rZ :“ F´1 pUq is feasible for probem (B.4) with parameter β,

comonotonic with X, and Pareto-improving. Moreover, rZ has also F as a distribution function. To

show optimality of rZ˚ “ f˚ pUq for problem (B.4) with parameter β it remains to show that
ż
ue

`
W e

0 `H ´ rZ˚
˘
φ pXq dQ ě

ż
ue

`
W e

0 `H ´ rZ
˘
φ pXq dQ

Now, let f :“ F´1, so that rZ “ f pUq. Since rZ is feasible for probem (B.4) with parameter β, we
have

β “

ż
rZ dT ˝ Q “

ż
F´1 pUq dT ˝ Q

“

ż 1

0

T 1 p1 ´ tqF´1 ptq dt “

ż
T 1 p1 ´ Uq f pUq dQ

Hence, f is feasible for problem (B.6) with parameter β. Since f˚ is optimal for problem (B.6) with
parameter β we have

ż
ue

`
W e

0 `H ´ f˚ pUq
˘
φ

`
F´1
X pUq

˘
dQ ě

ż
ue

`
W e

0 `H ´ f pUq
˘
φ

`
F´1
X pUq

˘
dQ

Finally, since X “ F´1
X pUq , Q-a.s., we have

ż
ue

`
W e

0 `H ´ rZ˚
˘
φ pXq dQ ě

ż
ue

`
W e

0 `H ´ rZ
˘
φ pXq dQ

Therefore, rZ˚ “ f˚ pUq is optimal for problem (B.4) with parameter β. Finally, by Lemma B.10,

Y ˚ :“ X ´ rZ˚ “ X ´ f˚ pUq is optimal for problem (B.3) with parameter β. �

By Lemmata B.8 and B.13, this completes the proof of Theorem 3.5.

Appendix C. Proof of Corollary 3.8

Recall from equation (3.3) that

AQuant “
!
f P Quant : 0 ď f pzq ď F´1

X pzq , for each 0 ă z ă 1
)
,
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where Quant “
!
f : p0, 1q Ñ R

ˇ̌
ˇ f is nondecreasing and left-continuous

)
. Define the collection K of

functions on p0, 1q as follows:

(C.1) K “
!
f : p0, 1q Ñ R

ˇ̌
ˇ 0 ď f pzq ď F´1

X pzq , for each 0 ă z ă 1
)

Then AQuant “ QuantX K. Consider the following problem, with parameter β P Γ:

For a given β P Γ

sup
f

V pfq “

ż 1

0

ue
`
W e

0 `H ´ f ptq
˘
φ

`
F´1
X ptq

˘
dt(C.2)

s.t. f P AQuant
ż 1

0

T 1 p1 ´ tq f ptq dt “ β

Lemma C.1. For a given β P Γ, if f˚ P AQuant satisfies the following:

(1)
ş1
0
T 1 p1 ´ tq f˚ ptq dt “ β;

(2) There exists λ ď 0 such that for all t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u,

f˚ ptq “ argmax
0ďyďF´1

X
ptq

“
ue pW e

0 `H ´ yqφ
`
F´1
X ptq

˘
´ λT 1 p1 ´ tq y

‰

Then f˚ solves problem (C.2) with parameter β

Proof. Fix β P Γ, suppose that f˚ P AQuant satisfies conditions p1q and p2q above. Then, in
particular, f˚ is feasible for problem (C.2) with parameter β. To show optimality of f˚ for problem
(C.2) with parameter β, let f by any other feasible solution for problem (C.2) with parameter β.
Then, for all t P p0, 1q ztt : φ ˝ F´1

x ptq “ 0u,

ue pW e
0 `H ´ f˚ ptqq φ

`
F´1
X ptq

˘
´ λT 1 p1 ´ tq f˚ ptq

ě ue pW e
0 `H ´ f ptqqφ

`
F´1
X ptq

˘
´ λT 1 p1 ´ tq f ptq

That is,
”
ue pW e

0 `H ´ f˚ ptqq ´ ue pW e
0 `H ´ f ptqq

ı
φ

`
F´1
X ptq

˘
ě λT 1 p1 ´ tq

”
f˚ ptq ´ f ptq

ı
. In-

tegrating yields V pf˚q ´ V pfq ě λ rβ ´ βs “ 0, that is V pf˚q ě V pfq, as required. �

Hence, in view of Lemma C.1, in order to find a solution for problem (C.2) with a given parameter
β P Γ and a given λ ď 0, one can start by solving the problem

(C.3) max
0ďfλptqďF´1

X
ptq

“
ue pW e

0 `H ´ fλ ptqqφ
`
F´1
X ptq

˘
´ λT 1 p1 ´ tq fλ ptq

‰

for a fixed t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u.

Consider first the following problem:

(C.4) max
fλptq

“
ue pW e

0 `H ´ fλ ptqqφ
`
F´1
X ptq

˘
´ λT 1 p1 ´ tq fλ ptq

‰

for a fixed t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u.
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By concavity of the utility function u, in order to solve problem (C.4), it suffices to solve for the
first-order condition

´u1
e pW e

0 `H ´ f˚
λ ptqqφ

`
F´1
X ptq

˘
´ λT 1 p1 ´ tq “ 0

which gives

(C.5) f˚
λ ptq “ W e

0 `H ´
`
u1
e

˘´1

˜
´λT 1 p1 ´ tq

φ
`
F´1
X ptq

˘
¸

Then the function f˚
λ ptq solve problem (C.4), for a fixed t P p0, 1q ztt : φ ˝ F´1

x ptq “ 0u.

By Assumption 3.7, the function t ÞÑ T 1p1´tq

φpF´1

X
ptqq

is nondecreasing. By Assumption 2.1 , the function

ue is strictly concave and continuously differentiable. Hence, the function u1
e is both continuous and

strictly decreasing. This then implies that pu1
eq´1 is continuous and strictly decreasing, by the Inverse

Function Theorem [25, pp. 221-223]. Therefore, the function f˚
λ ptq in equation (C.5) is nondecreasing

(λ ď 0). Moreover, by Assumption 3.1 and Assumption 3.6, f˚
λ ptq is left-continuous.

Define the function f˚˚
λ by

(C.6) f˚˚
λ ptq “ max

«
0,min

!
F´1
X ptq , f˚

λ ptq
)ff

Then f˚˚
λ ptq P K. Moreover, since both F´1

X and f˚
λ are nondecreasing and left-continuous functions,

it follows that f˚˚
λ is nondecreasing and left-continuous. Consequently, f˚˚

λ ptq P AQuant. Finally,
it is easily seen that f˚˚

λ ptq solves problem (C.3) for the given λ. Now, for a given β0 P Γ, if λ˚ is

chosen so that
ş1
0
T 1 p1 ´ tq f˚˚

λ˚ ptq dt “ β0, then by Lemma C.1, f˚˚
λ˚ is optimal for problem (C.2)

with parameter β0.

Hence, to conclude the proof of Corollary 3.8, it remains to show that for each β0 P Γ, there exists

a λ˚ ď 0 such that
ş1
0
T 1 p1 ´ tq f˚˚

λ˚ ptq dt “ β0. This is given by Lemma C.2 below.

Lemma C.2. Let ψ be the function of the parameter λ ď 0 defined by ψ pλq :“
ş1
0
T 1 p1 ´ tq f˚˚

λ ptq dt.
Then for each β0 P Γ, there exists a λ˚ ď 0 such that ψ pλ˚q “ β0.

Proof. First note that ψ is a continuous and nonincreasing function of λ, where continuity of ψ is a
consequence of Lebesgue’s Dominated Convergence Theorem [1, Theorem 11.21]. Indeed, since X is
bounded and since F´1

X is nondecreasing, it follows that for each t P r0, 1s,

min
!
F´1
X ptq , f˚

λ ptq
)

ď F´1
X ptq ď F´1

X p1q ď M “ }X}s ă `8.

Moreover, since T is concave and increasing, T 1 is nonincreasing and nonnegative, and so for each
t P r0, 1s, 0 ď T 1 p1 ´ tq ď T 1 p0q. But T 1 p0q ă `8, by Assumption 3.1. Hence, for each t P r0, 1s,

min
!
F´1
X ptq , f˚

λ ptq
)
T 1 p1 ´ tq ď F´1

X p1qT 1 p0q ď }X}s T
1 p0q ă `8
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Moreover, ψ p0q “ 0 (by Assumption 2.1), and

lim
λÑ´8

ψ pλq “

ż 1

0

T 1 p1 ´ tqmin
!
F´1
X ptq ,W e

0 `H
)
dt

“

ż FXpW e
0

`Hq

0

T 1 p1 ´ tqF´1
X ptq dt ` pW e

0 `Hq

ż 1

FXpW e
0

`Hq
T 1 p1 ´ tq dt

However, by Assumption 3.2, we have FX pW e
0 `Hq “ 1. This then implies that

lim
λÑ´8

ψ pλq “

ż 1

0

T 1 p1 ´ tqF´1
X ptq dt “

ż
X dT ˝ Q

Now, for any β0 P Γ, and for any Y P B` pΣq which is feasible for problem (B.1) with parameter
β0, one has:

(i) 0 ď Y ď X; and,

(ii)
ş

pX ´ Y q dT ˝Q “ β0.

Hence, 0 ď X´Y ď X, and so, by monotonicity of the Choquet integral (Proposition A.6), it follows
that β0 “

ş
pX ´ Y q dT ˝ Q ď

ş
X dT ˝Q. Consequently, for any β0 P Γ,

0 “ ψ p0q ď β0 ď

ż
X dT ˝ Q “ lim

λÑ´8
ψ pλq

Hence, by the Intermediate Value Theorem [25, Theorem 4.23], for each β0 P Γ there exists some
λ˚ ď 0 such that ψ pλ˚q “ β0. �

By Lemmata C.1 and C.2, this concludes the proof of Corollary 3.8.
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